Smart waste management and air pollution forecasting: Harnessing Internet of things and fully Elman neural network.

IF 3.7 4区 环境科学与生态学 Q3 ENGINEERING, ENVIRONMENTAL Waste Management & Research Pub Date : 2025-03-20 DOI:10.1177/0734242X241313286
Bhagyashree Madan, Sruthi Nair, Nikita Katariya, Ankita Mehta, Purva Gogte
{"title":"Smart waste management and air pollution forecasting: Harnessing Internet of things and fully Elman neural network.","authors":"Bhagyashree Madan, Sruthi Nair, Nikita Katariya, Ankita Mehta, Purva Gogte","doi":"10.1177/0734242X241313286","DOIUrl":null,"url":null,"abstract":"<p><p>As the Internet of things (IoT) continues to transform modern technologies, innovative applications in waste management and air pollution monitoring are becoming critical for sustainable development. In this manuscript, a novel smart waste management (SWM) and air pollution forecasting (APF) system is proposed by leveraging IoT sensors and the fully Elman neural network (FENN) model, termed as SWM-APF-IoT-FENN. The system integrates real-time data from waste and air quality sensors including weight, trash level, odour and carbon monoxide (CO) that are collected from smart bins connected to a Google Cloud Server. Here, the MaxAbsScaler is employed for data normalization, ensuring consistent feature representation. Subsequently, the atmospheric contaminants surrounding the waste receptacles were observed using a FENN model. This model is utilized to predict the atmospheric concentration of CO and categorize the bin status as filled, half-filled and unfilled. Moreover, the weight parameter of the FENN model is tuned using the secretary bird optimization algorithm for better prediction results. The implementation of the proposed methodology is done in Python tool, and the performance metrics are analysed. Experimental results demonstrate significant improvements in performance, achieving 15.65%, 18.45% and 21.09% higher accuracy, 18.14%, 20.14% and 24.01% higher F-Measure, 23.64%, 24.29% and 29.34% higher False Acceptance Rate (FAR), 25.00%, 27.09% and 31.74% higher precision, 20.64%, 22.45% and 28.64% higher sensitivity, 26.04%, 28.65% and 32.74% higher specificity, 9.45%, 7.38% and 4.05% reduced computational time than the conventional approaches such as Elman neural network, recurrent artificial neural network and long short-term memory with gated recurrent unit, respectively. Thus, the proposed method offers a streamlined, efficient framework for real-time waste management and pollution forecasting, addressing critical environmental challenges.</p>","PeriodicalId":23671,"journal":{"name":"Waste Management & Research","volume":" ","pages":"734242X241313286"},"PeriodicalIF":3.7000,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Waste Management & Research","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1177/0734242X241313286","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

As the Internet of things (IoT) continues to transform modern technologies, innovative applications in waste management and air pollution monitoring are becoming critical for sustainable development. In this manuscript, a novel smart waste management (SWM) and air pollution forecasting (APF) system is proposed by leveraging IoT sensors and the fully Elman neural network (FENN) model, termed as SWM-APF-IoT-FENN. The system integrates real-time data from waste and air quality sensors including weight, trash level, odour and carbon monoxide (CO) that are collected from smart bins connected to a Google Cloud Server. Here, the MaxAbsScaler is employed for data normalization, ensuring consistent feature representation. Subsequently, the atmospheric contaminants surrounding the waste receptacles were observed using a FENN model. This model is utilized to predict the atmospheric concentration of CO and categorize the bin status as filled, half-filled and unfilled. Moreover, the weight parameter of the FENN model is tuned using the secretary bird optimization algorithm for better prediction results. The implementation of the proposed methodology is done in Python tool, and the performance metrics are analysed. Experimental results demonstrate significant improvements in performance, achieving 15.65%, 18.45% and 21.09% higher accuracy, 18.14%, 20.14% and 24.01% higher F-Measure, 23.64%, 24.29% and 29.34% higher False Acceptance Rate (FAR), 25.00%, 27.09% and 31.74% higher precision, 20.64%, 22.45% and 28.64% higher sensitivity, 26.04%, 28.65% and 32.74% higher specificity, 9.45%, 7.38% and 4.05% reduced computational time than the conventional approaches such as Elman neural network, recurrent artificial neural network and long short-term memory with gated recurrent unit, respectively. Thus, the proposed method offers a streamlined, efficient framework for real-time waste management and pollution forecasting, addressing critical environmental challenges.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Waste Management & Research
Waste Management & Research 环境科学-工程:环境
CiteScore
8.50
自引率
7.70%
发文量
232
审稿时长
4.1 months
期刊介绍: Waste Management & Research (WM&R) publishes peer-reviewed articles relating to both the theory and practice of waste management and research. Published on behalf of the International Solid Waste Association (ISWA) topics include: wastes (focus on solids), processes and technologies, management systems and tools, and policy and regulatory frameworks, sustainable waste management designs, operations, policies or practices.
期刊最新文献
Smart waste management and air pollution forecasting: Harnessing Internet of things and fully Elman neural network. A comparison of bulk inorganic constituents and trace pollutant concentration in leachates by landfill type. Food waste minimisation and energy efficiency for carbon emission reduction. A comprehensive review on applications of multi-criteria decision-making methods in healthcare waste management. Classification of e-waste using machine learning-assisted laser-induced breakdown spectroscopy.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1