Naba Kumar Goswami , Samson Olaniyi , Sulaimon F. Abimbade , Furaha M. Chuma
{"title":"A mathematical model for investigating the effect of media awareness programs on the spread of COVID-19 with optimal control","authors":"Naba Kumar Goswami , Samson Olaniyi , Sulaimon F. Abimbade , Furaha M. Chuma","doi":"10.1016/j.health.2024.100300","DOIUrl":null,"url":null,"abstract":"<div><p>The coronavirus pandemic is a global health crisis creating an unprecedented socio-economic catastrophe. This pandemic is the biggest challenge the world has faced since World War II and is the main turning point in the history of humanity. Media coverage can change citizens’ attention to emerging infectious diseases and consequently change individual behaviors and attitudes. This study proposes and analyzes a seven-compartmental mathematical model to investigate the impact of media coverage on the spread and control of COVID-19. The threshold condition Ro for the initial transmission of infection is achieved by the next-generation approach. Stability analysis of the proposed model on disease-free and endemic equilibria is investigated in terms of basic reproduction numbers locally and globally. The sensitivity analysis of the reproduction number is visualized to distinguish the most sensitive parameters that can be regulated to control the transmission dynamics of coronavirus disease. Moreover, the theoretical results of the deterministic model are compared using numerical simulations. The outcomes of the analysis suggest that the disease prevalence can be terminated by suitable management of quarantine/medical care. We further extend the model to the optimal control framework. It is analyzed using Pontryagin’s maximum principle to characterize preventive control, testing facility, and treatment measures for managing COVID-19 transmission.</p></div>","PeriodicalId":73222,"journal":{"name":"Healthcare analytics (New York, N.Y.)","volume":"5 ","pages":"Article 100300"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772442524000029/pdfft?md5=181a72d948017369ae65a88b5750c988&pid=1-s2.0-S2772442524000029-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Healthcare analytics (New York, N.Y.)","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772442524000029","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The coronavirus pandemic is a global health crisis creating an unprecedented socio-economic catastrophe. This pandemic is the biggest challenge the world has faced since World War II and is the main turning point in the history of humanity. Media coverage can change citizens’ attention to emerging infectious diseases and consequently change individual behaviors and attitudes. This study proposes and analyzes a seven-compartmental mathematical model to investigate the impact of media coverage on the spread and control of COVID-19. The threshold condition Ro for the initial transmission of infection is achieved by the next-generation approach. Stability analysis of the proposed model on disease-free and endemic equilibria is investigated in terms of basic reproduction numbers locally and globally. The sensitivity analysis of the reproduction number is visualized to distinguish the most sensitive parameters that can be regulated to control the transmission dynamics of coronavirus disease. Moreover, the theoretical results of the deterministic model are compared using numerical simulations. The outcomes of the analysis suggest that the disease prevalence can be terminated by suitable management of quarantine/medical care. We further extend the model to the optimal control framework. It is analyzed using Pontryagin’s maximum principle to characterize preventive control, testing facility, and treatment measures for managing COVID-19 transmission.