Yufeng He, Deepak Jaiswal, Stephen P. Long, Xin-Zhong Liang, Megan L. Matthews
{"title":"Biomass yield potential on U.S. marginal land and its contribution to reach net-zero emission","authors":"Yufeng He, Deepak Jaiswal, Stephen P. Long, Xin-Zhong Liang, Megan L. Matthews","doi":"10.1111/gcbb.13128","DOIUrl":null,"url":null,"abstract":"<p>Bioenergy with carbon capture and geological storage (BECCS) is considered one of the top options for both offsetting CO<sub>2</sub> emissions and removing atmospheric CO<sub>2</sub>. BECCS requires using limited land resources efficiently while ensuring minimal adverse impacts on the delicate food-energy-water nexus. Perennial C4 biomass crops are productive on marginal land under low-input conditions avoiding conflict with food and feed crops. The eastern half of the contiguous U.S. contains a large amount of marginal land, which is not economically viable for food production and liable to wind and water erosion under annual cultivation. However, this land is suitable for geological CO<sub>2</sub> storage and perennial crop growth. Given the climate variation across the region, three perennials are major contenders for planting. The yield potential and stability of Miscanthus, switchgrass, and energycane across the region were compared to select which would perform best under the recent (2000–2014) and future (2036–2050) climates. Miscanthus performed best in the Midwest, switchgrass in the Northeast and energycane in the Southeast. On average, Miscanthus yield decreased from present 19.1 t/ha to future 16.8 t/ha; switchgrass yield from 3.5 to 2.4 t/ha; and energycane yield increased from 14 to 15 t/ha. Future yield stability decreased in the region with higher predicted drought stress. Combined, these crops could produce 0.6–0.62 billion tonnes biomass per year for the present and future. Using the biomass for power generation with CCS would capture 703–726 million tonnes of atmospheric CO<sub>2</sub> per year, which would offset about 11% of current total U.S. emission. Further, this biomass approximates the net primary CO<sub>2</sub> productivity of two times the current baseline productivity of existing vegetation, suggesting a huge potential for BECCS. Beyond BECCS, C4 perennial grasses could also increase soil carbon and provide biomass for emerging industries developing replacements for non-renewable products including plastics and building materials.</p>","PeriodicalId":55126,"journal":{"name":"Global Change Biology Bioenergy","volume":"16 2","pages":""},"PeriodicalIF":5.9000,"publicationDate":"2024-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/gcbb.13128","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Global Change Biology Bioenergy","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/gcbb.13128","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 0
Abstract
Bioenergy with carbon capture and geological storage (BECCS) is considered one of the top options for both offsetting CO2 emissions and removing atmospheric CO2. BECCS requires using limited land resources efficiently while ensuring minimal adverse impacts on the delicate food-energy-water nexus. Perennial C4 biomass crops are productive on marginal land under low-input conditions avoiding conflict with food and feed crops. The eastern half of the contiguous U.S. contains a large amount of marginal land, which is not economically viable for food production and liable to wind and water erosion under annual cultivation. However, this land is suitable for geological CO2 storage and perennial crop growth. Given the climate variation across the region, three perennials are major contenders for planting. The yield potential and stability of Miscanthus, switchgrass, and energycane across the region were compared to select which would perform best under the recent (2000–2014) and future (2036–2050) climates. Miscanthus performed best in the Midwest, switchgrass in the Northeast and energycane in the Southeast. On average, Miscanthus yield decreased from present 19.1 t/ha to future 16.8 t/ha; switchgrass yield from 3.5 to 2.4 t/ha; and energycane yield increased from 14 to 15 t/ha. Future yield stability decreased in the region with higher predicted drought stress. Combined, these crops could produce 0.6–0.62 billion tonnes biomass per year for the present and future. Using the biomass for power generation with CCS would capture 703–726 million tonnes of atmospheric CO2 per year, which would offset about 11% of current total U.S. emission. Further, this biomass approximates the net primary CO2 productivity of two times the current baseline productivity of existing vegetation, suggesting a huge potential for BECCS. Beyond BECCS, C4 perennial grasses could also increase soil carbon and provide biomass for emerging industries developing replacements for non-renewable products including plastics and building materials.
期刊介绍:
GCB Bioenergy is an international journal publishing original research papers, review articles and commentaries that promote understanding of the interface between biological and environmental sciences and the production of fuels directly from plants, algae and waste. The scope of the journal extends to areas outside of biology to policy forum, socioeconomic analyses, technoeconomic analyses and systems analysis. Papers do not need a global change component for consideration for publication, it is viewed as implicit that most bioenergy will be beneficial in avoiding at least a part of the fossil fuel energy that would otherwise be used.
Key areas covered by the journal:
Bioenergy feedstock and bio-oil production: energy crops and algae their management,, genomics, genetic improvements, planting, harvesting, storage, transportation, integrated logistics, production modeling, composition and its modification, pests, diseases and weeds of feedstocks. Manuscripts concerning alternative energy based on biological mimicry are also encouraged (e.g. artificial photosynthesis).
Biological Residues/Co-products: from agricultural production, forestry and plantations (stover, sugar, bio-plastics, etc.), algae processing industries, and municipal sources (MSW).
Bioenergy and the Environment: ecosystem services, carbon mitigation, land use change, life cycle assessment, energy and greenhouse gas balances, water use, water quality, assessment of sustainability, and biodiversity issues.
Bioenergy Socioeconomics: examining the economic viability or social acceptability of crops, crops systems and their processing, including genetically modified organisms [GMOs], health impacts of bioenergy systems.
Bioenergy Policy: legislative developments affecting biofuels and bioenergy.
Bioenergy Systems Analysis: examining biological developments in a whole systems context.