Capillarity Enabled Large-Array Liquid Metal Electrodes for Compact and High-Throughput Dielectrophoretic Microfluidics

IF 27.4 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Advanced Materials Pub Date : 2024-01-18 DOI:10.1002/adma.202310212
Huichao Chai, Junwen Zhu, Yongxiang Feng, Fei Liang, Qiyan Wu, Zhongjian Ju, Liang Huang, Wenhui Wang
{"title":"Capillarity Enabled Large-Array Liquid Metal Electrodes for Compact and High-Throughput Dielectrophoretic Microfluidics","authors":"Huichao Chai,&nbsp;Junwen Zhu,&nbsp;Yongxiang Feng,&nbsp;Fei Liang,&nbsp;Qiyan Wu,&nbsp;Zhongjian Ju,&nbsp;Liang Huang,&nbsp;Wenhui Wang","doi":"10.1002/adma.202310212","DOIUrl":null,"url":null,"abstract":"<p>Dielectrophoresis (DEP) particle separation has label-free, well-controllable, and low-damage merits. Sidewall microelectrodes made of liquid metal alloy (LMA) inherits the additional advantage of thick electrodes to generate impactful DEP force. However, existing LMA electrode-based devices lack the ability to integrate large-array electrodes in a compact footprint, severely limiting flow rate and thus throughput. Herein, a facile and versatile method is proposed to integrate high-density thick LMA electrodes in microfluidic devices, taking advantage of the passive control ability of capillary burst valves (CBVs). CBVs with carefully designed burst pressures are co-designed in microfluidic channels, allowing self-assembly of LMA electrode array through simple hand-push injection. The arrayed electrode configuration brings the accumulative DEP deflection effect. Specifically, The fabricated 5000 pairs of sidewall electrodes in a compact chip are demonstrted to achieve ten times higher throughput in DEP deflection. The 5000-electrode-pair device is applied to successfully separate four mixed samples, including human peripheral blood mononuclear cells and A549 cells with the flow rate of 70 µL min<sup>−1</sup>. It is envisioned that this work can greatly facilitate LMA electrode array fabrication and offer a robust and versatile platform for DEP separation applications.</p>","PeriodicalId":114,"journal":{"name":"Advanced Materials","volume":"36 21","pages":""},"PeriodicalIF":27.4000,"publicationDate":"2024-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/adma.202310212","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Dielectrophoresis (DEP) particle separation has label-free, well-controllable, and low-damage merits. Sidewall microelectrodes made of liquid metal alloy (LMA) inherits the additional advantage of thick electrodes to generate impactful DEP force. However, existing LMA electrode-based devices lack the ability to integrate large-array electrodes in a compact footprint, severely limiting flow rate and thus throughput. Herein, a facile and versatile method is proposed to integrate high-density thick LMA electrodes in microfluidic devices, taking advantage of the passive control ability of capillary burst valves (CBVs). CBVs with carefully designed burst pressures are co-designed in microfluidic channels, allowing self-assembly of LMA electrode array through simple hand-push injection. The arrayed electrode configuration brings the accumulative DEP deflection effect. Specifically, The fabricated 5000 pairs of sidewall electrodes in a compact chip are demonstrted to achieve ten times higher throughput in DEP deflection. The 5000-electrode-pair device is applied to successfully separate four mixed samples, including human peripheral blood mononuclear cells and A549 cells with the flow rate of 70 µL min−1. It is envisioned that this work can greatly facilitate LMA electrode array fabrication and offer a robust and versatile platform for DEP separation applications.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于紧凑型高通量压电微流控的毛细管式大阵列液态金属电极
介电泳(DEP)粒子分离技术具有无标记、可控性好、损伤小等优点。由液态金属合金(LMA)制成的侧壁微电极继承了厚电极的额外优势,可产生强大的 DEP 力。然而,现有的基于 LMA 电极的设备无法在紧凑的空间内集成大型阵列电极,从而严重限制了流速和产量。本文利用毛细管爆破阀(CBV)的被动控制能力,提出了一种在微流控设备中集成高密度厚 LMA 电极的简便、多功能方法。在微流体通道中共同设计了具有精心设计的爆破压力的 CBV,通过简单的手推注射就能自组装 LMA 电极阵列。阵列电极配置带来了累积 DEP 偏移效应。具体来说,我们展示了如何在一个紧凑的芯片中制造 5000 对侧壁电极,从而使 DEP 偏转的吞吐量提高 10 倍。我们应用这种 5000 对电极的装置成功分离了人外周血单核细胞(PBMC)和 A549 细胞的混合样品,流速为 70 µL min-1。预计这项工作将极大地促进 LMA 电极阵列的制造,并为 DEP 分离应用提供一个坚固耐用的多功能平台。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Advanced Materials
Advanced Materials 工程技术-材料科学:综合
CiteScore
43.00
自引率
4.10%
发文量
2182
审稿时长
2 months
期刊介绍: Advanced Materials, one of the world's most prestigious journals and the foundation of the Advanced portfolio, is the home of choice for best-in-class materials science for more than 30 years. Following this fast-growing and interdisciplinary field, we are considering and publishing the most important discoveries on any and all materials from materials scientists, chemists, physicists, engineers as well as health and life scientists and bringing you the latest results and trends in modern materials-related research every week.
期刊最新文献
Photoreceptor-Like Signal Transduction Between Polymer-Based Protocells (Adv. Mater. 3/2025) Supercooled Liquids in a Core–Shell Coordination Structure for Practical Long-Term Energy Storage Nano-Metal–Organic Frameworks Isolated in Mesoporous Structures Ultrahigh Specific Strength by Bayesian Optimization of Carbon Nanolattices Plasmonic Single-Molecule Affinity Detection at 10−20 Molar
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1