{"title":"Capillarity Enabled Large-Array Liquid Metal Electrodes for Compact and High-Throughput Dielectrophoretic Microfluidics","authors":"Huichao Chai, Junwen Zhu, Yongxiang Feng, Fei Liang, Qiyan Wu, Zhongjian Ju, Liang Huang, Wenhui Wang","doi":"10.1002/adma.202310212","DOIUrl":null,"url":null,"abstract":"<p>Dielectrophoresis (DEP) particle separation has label-free, well-controllable, and low-damage merits. Sidewall microelectrodes made of liquid metal alloy (LMA) inherits the additional advantage of thick electrodes to generate impactful DEP force. However, existing LMA electrode-based devices lack the ability to integrate large-array electrodes in a compact footprint, severely limiting flow rate and thus throughput. Herein, a facile and versatile method is proposed to integrate high-density thick LMA electrodes in microfluidic devices, taking advantage of the passive control ability of capillary burst valves (CBVs). CBVs with carefully designed burst pressures are co-designed in microfluidic channels, allowing self-assembly of LMA electrode array through simple hand-push injection. The arrayed electrode configuration brings the accumulative DEP deflection effect. Specifically, The fabricated 5000 pairs of sidewall electrodes in a compact chip are demonstrted to achieve ten times higher throughput in DEP deflection. The 5000-electrode-pair device is applied to successfully separate four mixed samples, including human peripheral blood mononuclear cells and A549 cells with the flow rate of 70 µL min<sup>−1</sup>. It is envisioned that this work can greatly facilitate LMA electrode array fabrication and offer a robust and versatile platform for DEP separation applications.</p>","PeriodicalId":114,"journal":{"name":"Advanced Materials","volume":"36 21","pages":""},"PeriodicalIF":27.4000,"publicationDate":"2024-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/adma.202310212","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Dielectrophoresis (DEP) particle separation has label-free, well-controllable, and low-damage merits. Sidewall microelectrodes made of liquid metal alloy (LMA) inherits the additional advantage of thick electrodes to generate impactful DEP force. However, existing LMA electrode-based devices lack the ability to integrate large-array electrodes in a compact footprint, severely limiting flow rate and thus throughput. Herein, a facile and versatile method is proposed to integrate high-density thick LMA electrodes in microfluidic devices, taking advantage of the passive control ability of capillary burst valves (CBVs). CBVs with carefully designed burst pressures are co-designed in microfluidic channels, allowing self-assembly of LMA electrode array through simple hand-push injection. The arrayed electrode configuration brings the accumulative DEP deflection effect. Specifically, The fabricated 5000 pairs of sidewall electrodes in a compact chip are demonstrted to achieve ten times higher throughput in DEP deflection. The 5000-electrode-pair device is applied to successfully separate four mixed samples, including human peripheral blood mononuclear cells and A549 cells with the flow rate of 70 µL min−1. It is envisioned that this work can greatly facilitate LMA electrode array fabrication and offer a robust and versatile platform for DEP separation applications.
期刊介绍:
Advanced Materials, one of the world's most prestigious journals and the foundation of the Advanced portfolio, is the home of choice for best-in-class materials science for more than 30 years. Following this fast-growing and interdisciplinary field, we are considering and publishing the most important discoveries on any and all materials from materials scientists, chemists, physicists, engineers as well as health and life scientists and bringing you the latest results and trends in modern materials-related research every week.