Leader discharge characteristics of equipotential live-line work gaps under positive switching impulse

IF 1.9 4区 工程技术 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC Journal of Electrostatics Pub Date : 2024-01-18 DOI:10.1016/j.elstat.2024.103895
Yaqi Fang , Bingsen Yang , Zhipeng Liu , Jiachen Gao , Suhan Mao , Xiaoxing Zhang
{"title":"Leader discharge characteristics of equipotential live-line work gaps under positive switching impulse","authors":"Yaqi Fang ,&nbsp;Bingsen Yang ,&nbsp;Zhipeng Liu ,&nbsp;Jiachen Gao ,&nbsp;Suhan Mao ,&nbsp;Xiaoxing Zhang","doi":"10.1016/j.elstat.2024.103895","DOIUrl":null,"url":null,"abstract":"<div><p>The leader discharge is the primary process in long air gap discharge. However, there is currently a lack of detailed observation of the development process of leader discharge in equipotential live-line work (EPLW) gaps. Therefore, this study utilizes an electrical and optical synchronous observation platform to measure the key parameters of leader discharge in two typical EPLW gaps with gap distance of 2 m–3.5 m. Research results indicates that the worker's posture has significant effect on the leader characteristics of EPLW gaps. The longer the length of the worker's body-parts stretch out the bundle conductor and the small diameter of the discharge part is, the lower the leader inception voltage and inception current are. The average leader velocity of worker facing the tower is 5.93–7.67 cm/μs, however the leader velocity of worker facing the conductor is 7.43–9.59 cm/μs. The bending frequency of the leader channel of these two typical EPLW gaps both rise with the increase of gap distance. The axial deflection angle of worker facing the conductor gap is 27.87°, which is larger and more dispersive than that of worker facing the test tower gap. These test results can provide important references for determination of minimum approach distance and optimization of equipotential entering path for live-line work.</p></div>","PeriodicalId":54842,"journal":{"name":"Journal of Electrostatics","volume":"128 ","pages":"Article 103895"},"PeriodicalIF":1.9000,"publicationDate":"2024-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Electrostatics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304388624000020","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

The leader discharge is the primary process in long air gap discharge. However, there is currently a lack of detailed observation of the development process of leader discharge in equipotential live-line work (EPLW) gaps. Therefore, this study utilizes an electrical and optical synchronous observation platform to measure the key parameters of leader discharge in two typical EPLW gaps with gap distance of 2 m–3.5 m. Research results indicates that the worker's posture has significant effect on the leader characteristics of EPLW gaps. The longer the length of the worker's body-parts stretch out the bundle conductor and the small diameter of the discharge part is, the lower the leader inception voltage and inception current are. The average leader velocity of worker facing the tower is 5.93–7.67 cm/μs, however the leader velocity of worker facing the conductor is 7.43–9.59 cm/μs. The bending frequency of the leader channel of these two typical EPLW gaps both rise with the increase of gap distance. The axial deflection angle of worker facing the conductor gap is 27.87°, which is larger and more dispersive than that of worker facing the test tower gap. These test results can provide important references for determination of minimum approach distance and optimization of equipotential entering path for live-line work.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
正向开关脉冲下等电位带电线路工作间隙的引线放电特性
引线放电是长气隙放电的主要过程。然而,目前缺乏对等电位带电作业(EPLW)间隙中领导放电发展过程的详细观测。因此,本研究利用电气和光学同步观测平台,测量了两个典型等电位带电作业间隙(间隙距离为 2 m-3.5 m)的引线放电关键参数。工人的身体部分伸出束导体的长度越长,放电部分的直径越小,引线起始电压和起始电流就越低。面向塔架的工人的平均引线速度为 5.93-7.67 cm/μs,而面向导体的工人的引线速度为 7.43-9.59 cm/μs。这两种典型 EPLW 间隙的导线通道弯曲频率都随着间隙距离的增加而增加。面向导线间隙的工人的轴向偏转角为 27.87°,比面向试验塔间隙的工人的轴向偏转角更大,更分散。这些测试结果可为带电作业最小接近距离的确定和等电位进入路径的优化提供重要参考。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Electrostatics
Journal of Electrostatics 工程技术-工程:电子与电气
CiteScore
4.00
自引率
11.10%
发文量
81
审稿时长
49 days
期刊介绍: The Journal of Electrostatics is the leading forum for publishing research findings that advance knowledge in the field of electrostatics. We invite submissions in the following areas: Electrostatic charge separation processes. Electrostatic manipulation of particles, droplets, and biological cells. Electrostatically driven or controlled fluid flow. Electrostatics in the gas phase.
期刊最新文献
Editorial Board Optimisation of CuO/AC, Fe2O3/AC synergistic multi-electrode DBD reactor for degradation of ATZ in water Triboelectric charging of polydisperse particles in a developed pipe flow Effect of field emission on contact spark in the spark test apparatus A theoretical approach towards developing space charge formation in lossy dielectrics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1