Ross M. Weiss, Federica Zanetti, Barbara Alberghini, Debra Puttick, Meghan A. Vankosky, Andrea Monti, Christina Eynck
{"title":"Bioclimatic analysis of potential worldwide production of spring-type camelina [Camelina sativa (L.) Crantz] seeded in the spring","authors":"Ross M. Weiss, Federica Zanetti, Barbara Alberghini, Debra Puttick, Meghan A. Vankosky, Andrea Monti, Christina Eynck","doi":"10.1111/gcbb.13126","DOIUrl":null,"url":null,"abstract":"<p>Camelina [<i>Camelina sativa</i> (L.) Crantz] is a Brassicaceae oilseed that is gaining interest worldwide as low-maintenance crop for diverse biobased applications. One of the most important factors determining its productivity is climate. We conducted a bioclimate analysis in order to analyze the relationship between climatic factors and the productivity of spring-type camelina seeded in the spring, and to identify regions of the world with potential for camelina in this scenario. Using the modelling tool CLIMEX, a bioclimatic model was developed for spring-seeded spring-type camelina to match distribution, reported seed yields and phenology records in North America. Distribution, yield, and phenology data from outside of North America were used as independent datasets for model validation and demonstrated that model projections agreed with published distribution records, reported spring-seeded camelina yields, and closely predicted crop phenology in Europe, South America, and Asia. Sensitivity analysis, used to quantify the response of camelina to changes in precipitation and temperature, indicated that crop performance was more sensitive to moisture than temperature index parameters, suggesting that the yield potential of spring-seeded camelina may be more strongly impacted by water-limited conditions than by high temperatures. Incremental climate scenarios also revealed that spring-seeded camelina production will exhibit yield shifts at the continental scale as temperature and precipitation deviate from current conditions. Yield data were compared with indices of climatic suitability to provide estimates of potential worldwide camelina productivity. This information was used to identify new areas where spring-seeded camelina could be grown and areas that may permit expanded production, including eastern Europe, China, eastern Russia, Australia and New Zealand. Our model is the first to have taken a systematic approach to determine suitable regions for potential worldwide production of spring-seeded camelina.</p>","PeriodicalId":55126,"journal":{"name":"Global Change Biology Bioenergy","volume":"16 2","pages":""},"PeriodicalIF":5.9000,"publicationDate":"2024-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/gcbb.13126","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Global Change Biology Bioenergy","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/gcbb.13126","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 0
Abstract
Camelina [Camelina sativa (L.) Crantz] is a Brassicaceae oilseed that is gaining interest worldwide as low-maintenance crop for diverse biobased applications. One of the most important factors determining its productivity is climate. We conducted a bioclimate analysis in order to analyze the relationship between climatic factors and the productivity of spring-type camelina seeded in the spring, and to identify regions of the world with potential for camelina in this scenario. Using the modelling tool CLIMEX, a bioclimatic model was developed for spring-seeded spring-type camelina to match distribution, reported seed yields and phenology records in North America. Distribution, yield, and phenology data from outside of North America were used as independent datasets for model validation and demonstrated that model projections agreed with published distribution records, reported spring-seeded camelina yields, and closely predicted crop phenology in Europe, South America, and Asia. Sensitivity analysis, used to quantify the response of camelina to changes in precipitation and temperature, indicated that crop performance was more sensitive to moisture than temperature index parameters, suggesting that the yield potential of spring-seeded camelina may be more strongly impacted by water-limited conditions than by high temperatures. Incremental climate scenarios also revealed that spring-seeded camelina production will exhibit yield shifts at the continental scale as temperature and precipitation deviate from current conditions. Yield data were compared with indices of climatic suitability to provide estimates of potential worldwide camelina productivity. This information was used to identify new areas where spring-seeded camelina could be grown and areas that may permit expanded production, including eastern Europe, China, eastern Russia, Australia and New Zealand. Our model is the first to have taken a systematic approach to determine suitable regions for potential worldwide production of spring-seeded camelina.
期刊介绍:
GCB Bioenergy is an international journal publishing original research papers, review articles and commentaries that promote understanding of the interface between biological and environmental sciences and the production of fuels directly from plants, algae and waste. The scope of the journal extends to areas outside of biology to policy forum, socioeconomic analyses, technoeconomic analyses and systems analysis. Papers do not need a global change component for consideration for publication, it is viewed as implicit that most bioenergy will be beneficial in avoiding at least a part of the fossil fuel energy that would otherwise be used.
Key areas covered by the journal:
Bioenergy feedstock and bio-oil production: energy crops and algae their management,, genomics, genetic improvements, planting, harvesting, storage, transportation, integrated logistics, production modeling, composition and its modification, pests, diseases and weeds of feedstocks. Manuscripts concerning alternative energy based on biological mimicry are also encouraged (e.g. artificial photosynthesis).
Biological Residues/Co-products: from agricultural production, forestry and plantations (stover, sugar, bio-plastics, etc.), algae processing industries, and municipal sources (MSW).
Bioenergy and the Environment: ecosystem services, carbon mitigation, land use change, life cycle assessment, energy and greenhouse gas balances, water use, water quality, assessment of sustainability, and biodiversity issues.
Bioenergy Socioeconomics: examining the economic viability or social acceptability of crops, crops systems and their processing, including genetically modified organisms [GMOs], health impacts of bioenergy systems.
Bioenergy Policy: legislative developments affecting biofuels and bioenergy.
Bioenergy Systems Analysis: examining biological developments in a whole systems context.