Carbon Cycle–Climate Feedbacks in the Post-Paris World

IF 11.3 1区 地球科学 Q1 ASTRONOMY & ASTROPHYSICS Annual Review of Earth and Planetary Sciences Pub Date : 2024-01-18 DOI:10.1146/annurev-earth-031621-081700
David S. Schimel, Dustin Carroll
{"title":"Carbon Cycle–Climate Feedbacks in the Post-Paris World","authors":"David S. Schimel, Dustin Carroll","doi":"10.1146/annurev-earth-031621-081700","DOIUrl":null,"url":null,"abstract":"The Paris Agreement calls for emissions reductions to limit climate change, but how will the carbon cycle change if it is successful? The land and oceans currently absorb roughly half of anthropogenic emissions, but this fraction will decline in the future. The amount of carbon that can be released before climate is mitigated depends on the amount of carbon the ocean and terrestrial ecosystems can absorb. Policy is based on model projections, but observations and theory suggest that climate effects emerging in today's climate will increase and carbon cycle tipping points may be crossed. Warming temperatures, drought, and a slowing growth rate of CO<jats:sub>2</jats:sub> itself will reduce land and ocean sinks and create new sources, making carbon sequestration in forests, soils, and other land and aquatic vegetation more difficult. Observations, data-assimilative models, and prediction systems are needed for managing ongoing long-term changes to land and ocean systems after achieving net-zero emissions. ▪ International agreements call for stabilizing climate at 1.5° above preindustrial, while the world is already seeing damaging extremes below that. ▪ If climate is stabilized near the 1.5° target, the driving force for most sinks will slow, while feedbacks from the warmer climate will continue to cause sources. ▪ Once emissions are reduced to net zero, carbon cycle-climate feedbacks will require observations to support ongoing active management to maintain storage.Expected final online publication date for the Annual Review of Earth and Planetary Sciences, Volume 52 is May 2024. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.","PeriodicalId":8034,"journal":{"name":"Annual Review of Earth and Planetary Sciences","volume":null,"pages":null},"PeriodicalIF":11.3000,"publicationDate":"2024-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual Review of Earth and Planetary Sciences","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1146/annurev-earth-031621-081700","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

The Paris Agreement calls for emissions reductions to limit climate change, but how will the carbon cycle change if it is successful? The land and oceans currently absorb roughly half of anthropogenic emissions, but this fraction will decline in the future. The amount of carbon that can be released before climate is mitigated depends on the amount of carbon the ocean and terrestrial ecosystems can absorb. Policy is based on model projections, but observations and theory suggest that climate effects emerging in today's climate will increase and carbon cycle tipping points may be crossed. Warming temperatures, drought, and a slowing growth rate of CO2 itself will reduce land and ocean sinks and create new sources, making carbon sequestration in forests, soils, and other land and aquatic vegetation more difficult. Observations, data-assimilative models, and prediction systems are needed for managing ongoing long-term changes to land and ocean systems after achieving net-zero emissions. ▪ International agreements call for stabilizing climate at 1.5° above preindustrial, while the world is already seeing damaging extremes below that. ▪ If climate is stabilized near the 1.5° target, the driving force for most sinks will slow, while feedbacks from the warmer climate will continue to cause sources. ▪ Once emissions are reduced to net zero, carbon cycle-climate feedbacks will require observations to support ongoing active management to maintain storage.Expected final online publication date for the Annual Review of Earth and Planetary Sciences, Volume 52 is May 2024. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
后巴黎世界的碳循环-气候反馈作用
巴黎协定》呼吁通过减排来限制气候变化,但如果该协定获得成功,碳循环将如何变化?目前,陆地和海洋吸收了大约一半的人为排放,但这部分排放在未来将会减少。在气候得到缓解之前能够释放的碳量取决于海洋和陆地生态系统能够吸收的碳量。政策是以模型预测为基础的,但观测和理论表明,当今气候中出现的气候效应将会增加,碳循环临界点可能会被跨越。气温升高、干旱以及二氧化碳本身增长速度的减缓将减少陆地和海洋的碳汇,并产生新的碳源,从而使森林、土壤以及其他陆地和水生植被的碳封存变得更加困难。在实现净零排放后,需要观测、数据同化模型和预测系统来管理陆地和海洋系统正在发生的长期变化。国际协议要求将气候稳定在比工业化前高出 1.5° 的水平,而世界上已经出现了低于这一水平的破坏性极端气候。如果气候稳定在 1.5° 目标附近,大多数汇的驱动力将放缓,而气候变暖的反馈将继续造成源。一旦排放量减少到净零,碳循环-气候反馈将需要观测来支持持续的积极管理,以维持储存。《地球与行星科学年度评论》第 52 卷的最终在线出版日期预计为 2024 年 5 月。修订后的估算请参见 http://www.annualreviews.org/page/journal/pubdates。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Annual Review of Earth and Planetary Sciences
Annual Review of Earth and Planetary Sciences 地学天文-地球科学综合
CiteScore
25.10
自引率
0.00%
发文量
25
期刊介绍: Since its establishment in 1973, the Annual Review of Earth and Planetary Sciences has been dedicated to providing comprehensive coverage of advancements in the field. This esteemed publication examines various aspects of earth and planetary sciences, encompassing climate, environment, geological hazards, planet formation, and the evolution of life. To ensure wider accessibility, the latest volume of the journal has transitioned from a gated model to open access through the Subscribe to Open program by Annual Reviews. Consequently, all articles published in this volume are now available under the Creative Commons Attribution (CC BY) license.
期刊最新文献
Grain Size in Landscapes The Geologic History of Plants and Climate in India Hydrotectonics of Grand Canyon Groundwater Evolution, Modification, and Deformation of Continental Lithosphere: Insights from the Eastern Margin of North America Cenozoic History of the Indonesian Gateway
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1