Application of amplified damped outrigger in seismic design of high-rise buildings

Hongjing Xue, Zibin Zhao, Pei Li, Weinong Shu, Yu Guan, Dongdong He, Dong Wei, Jincheng Song
{"title":"Application of amplified damped outrigger in seismic design of high-rise buildings","authors":"Hongjing Xue, Zibin Zhao, Pei Li, Weinong Shu, Yu Guan, Dongdong He, Dong Wei, Jincheng Song","doi":"10.1002/tal.2077","DOIUrl":null,"url":null,"abstract":"The application of the outrigger technology effectively improves the lateral stiffness of buildings, reduces harmful deformation, enhances the seismic resistance of structures, and contributes to the rapid development of high-rise buildings. To improve the response speed and energy dissipation of a viscous damping outrigger under seismic excitation, a viscous damping outrigger with an amplifier was proposed, and its effectiveness was verified by combining it with the seismic design of a 149.2 m high-rise building in an 8.5-degree intensity area. To determine the additional damping ratio of the building structure, investigations were carried out using both the code method and energy ratio method to evaluate the contribution of the damping outrigger. The damped outrigger equivalent stiffness determination method was studied, and the simplified engineering calculation method was compared against the refined finite element analysis results for engineering design purposes. The displacement amplification technique incorporated into the viscously damped outrigger can enhance the damper response speed, and increase the energy dissipation of the damped outrigger system. The application of an enlarged damped outrigger in engineering can result in an additional damping ratio of approximately 1% while simplifying the calculation method based on the additional damping and equivalent damper cut-line stiffness, which can be useful in engineering design.","PeriodicalId":501238,"journal":{"name":"The Structural Design of Tall and Special Buildings","volume":"26 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Structural Design of Tall and Special Buildings","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/tal.2077","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The application of the outrigger technology effectively improves the lateral stiffness of buildings, reduces harmful deformation, enhances the seismic resistance of structures, and contributes to the rapid development of high-rise buildings. To improve the response speed and energy dissipation of a viscous damping outrigger under seismic excitation, a viscous damping outrigger with an amplifier was proposed, and its effectiveness was verified by combining it with the seismic design of a 149.2 m high-rise building in an 8.5-degree intensity area. To determine the additional damping ratio of the building structure, investigations were carried out using both the code method and energy ratio method to evaluate the contribution of the damping outrigger. The damped outrigger equivalent stiffness determination method was studied, and the simplified engineering calculation method was compared against the refined finite element analysis results for engineering design purposes. The displacement amplification technique incorporated into the viscously damped outrigger can enhance the damper response speed, and increase the energy dissipation of the damped outrigger system. The application of an enlarged damped outrigger in engineering can result in an additional damping ratio of approximately 1% while simplifying the calculation method based on the additional damping and equivalent damper cut-line stiffness, which can be useful in engineering design.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
放大阻尼支腿在高层建筑抗震设计中的应用
支腿技术的应用有效提高了建筑物的侧向刚度,减少了有害变形,增强了结构的抗震能力,促进了高层建筑的快速发展。为了提高粘滞阻尼支腿在地震激励下的响应速度和耗能能力,提出了一种带放大器的粘滞阻尼支腿,并结合 8.5 度烈度区 149.2 米高层建筑的抗震设计验证了其有效性。为确定建筑结构的附加阻尼比,采用规范法和能量比法进行了研究,以评估阻尼支腿的贡献。研究了阻尼支腿等效刚度确定方法,并将简化的工程计算方法与精细的有限元分析结果进行了比较,以便进行工程设计。粘滞阻尼支腿中的位移放大技术可以提高阻尼器的响应速度,增加阻尼支腿系统的能量耗散。在工程中应用增大阻尼支腿可增加约 1%的阻尼比,同时简化基于附加阻尼和等效阻尼器切线刚度的计算方法,这在工程设计中非常有用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Analysis of seismic damage and seismic capacity of the structure of the ultrahigh pagoda Enhancing Concrete Performance with Waste Foundry Sand Using Ternary Blended Mixes of Ordinary Portland Cement, Silica Fume, and Ground Granulated Blast Furnace Slag An improved Chinese load code method for the evaluation of wind‐induced base shear force on base‐isolated buildings Prediction of wind pressures on supertall buildings based on proper orthogonal decomposition and machine learning The fiber hinge model for unbonded post‐tensioned beam‐column connections
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1