首页 > 最新文献

The Structural Design of Tall and Special Buildings最新文献

英文 中文
Analysis of seismic damage and seismic capacity of the structure of the ultrahigh pagoda 超高塔结构的震害和抗震能力分析
Pub Date : 2024-09-17 DOI: 10.1002/tal.2181
Junlong Lu, Jingyi Tian, Zhenshan Wang, Feng Jiang, Xiaoqin Wu
The Chongwen Pagoda is the tallest masonry pagoda in China, with numerous openings inside the pagoda body. It is prone to damage during earthquakes, and the patterns of damage are complex. In order to scientifically analyze the dynamic performance, earthquake damage patterns, and mechanisms of the pagoda structure, on‐site dynamic testing was conducted to obtain the dynamic characteristics of the structure. A numerical model was established using Abaqus finite element software to calculate the dynamic characteristics of the structure. The results were compared with the testing results and showed a close agreement. El‐Centro earthquake wave, Taft earthquake wave, and Lanzhou artificial earthquake wave were selected as earthquake inputs based on site conditions, simulating frequent earthquakes, fortification earthquakes, and rare earthquakes with a magnitude of 9. The dynamic response of the pagoda structure was calculated, and the relationship between acceleration amplification factor, interstorey displacement, and interstorey displacement angle with floor height was analyzed. The seismic damage to the structure and the distribution of primary tensile stresses were studied, revealing the seismic damage mechanisms and the distribution characteristics of vulnerable areas in the Chongwen Pagoda. The research results provide references for the seismic assessment of this ancient pagoda.
崇文塔是中国最高的砖石塔,塔身内部有许多开口。它在地震中易发生破坏,且破坏形态复杂。为了科学分析该塔结构的动力性能、震害形态和机理,现场进行了动力测试,以获得该结构的动力特性。利用 Abaqus 有限元软件建立了数值模型,计算了结构的动力特性。计算结果与测试结果进行了比较,结果表明两者非常接近。根据现场条件选择了 El-Centro 地震波、Taft 地震波和兰州人工地震波作为地震输入,模拟了频发地震、设防地震和 9 级罕见地震,计算了宝塔结构的动力响应,分析了加速度放大系数、层间位移和层间位移角与层高的关系。研究了结构的地震破坏和主拉应力分布,揭示了崇文塔的地震破坏机理和易损区分布特征。研究成果为该古塔的抗震评估提供了参考。
{"title":"Analysis of seismic damage and seismic capacity of the structure of the ultrahigh pagoda","authors":"Junlong Lu, Jingyi Tian, Zhenshan Wang, Feng Jiang, Xiaoqin Wu","doi":"10.1002/tal.2181","DOIUrl":"https://doi.org/10.1002/tal.2181","url":null,"abstract":"The Chongwen Pagoda is the tallest masonry pagoda in China, with numerous openings inside the pagoda body. It is prone to damage during earthquakes, and the patterns of damage are complex. In order to scientifically analyze the dynamic performance, earthquake damage patterns, and mechanisms of the pagoda structure, on‐site dynamic testing was conducted to obtain the dynamic characteristics of the structure. A numerical model was established using Abaqus finite element software to calculate the dynamic characteristics of the structure. The results were compared with the testing results and showed a close agreement. El‐Centro earthquake wave, Taft earthquake wave, and Lanzhou artificial earthquake wave were selected as earthquake inputs based on site conditions, simulating frequent earthquakes, fortification earthquakes, and rare earthquakes with a magnitude of 9. The dynamic response of the pagoda structure was calculated, and the relationship between acceleration amplification factor, interstorey displacement, and interstorey displacement angle with floor height was analyzed. The seismic damage to the structure and the distribution of primary tensile stresses were studied, revealing the seismic damage mechanisms and the distribution characteristics of vulnerable areas in the Chongwen Pagoda. The research results provide references for the seismic assessment of this ancient pagoda.","PeriodicalId":501238,"journal":{"name":"The Structural Design of Tall and Special Buildings","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142269374","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
An improved Chinese load code method for the evaluation of wind‐induced base shear force on base‐isolated buildings 中国荷载规范的一种改进方法,用于评估基底隔震建筑物的风致基底剪力
Pub Date : 2024-09-13 DOI: 10.1002/tal.2173
Hehong Zhou, Wenchen Lie
The isolator units in a seismically isolated structure shall have a surplus yield strength under wind loads. The isolation interface must have enough strength to state at an elastic stage under wind loads. This necessitates an accurate evaluation of wind‐induced base shear force. Initially, to calculate the equivalent static wind load (ESWL) and the base shear force of a base‐isolated building, the validity of the inertial wind load (IWL) method and Chinese load code (CLC) method, the simplification based on the IWL method, are examined via comparison with response‐history analysis results. Comparative analysis reveals that the IWL method was more accurate in evaluating the ESWL and the base shear force of base‐isolated building, while the CLC method underestimated them due to the following reasons: inaccurate fundamental modal shape, a reduced peak factor, the omission of the ESWL contribution from the isolation interface, and flawed assumptions of uniform mass distribution. Subsequently, an improved CLC method that combined the exponential modal shape and first modal generalized mass modification coefficient is proposed and verified by a case study. Compared with the CLC method, the fluctuating base shear force calculated by the improved CLC method increased by 10% in the case study. Finally, the effect of non‐uniformly distributed mass is further considered in the proposed method by devising a mass conversion coefficient, and the case study has also validated this method. Without considering the effect of the non‐uniform mass, the fluctuating base shear force will be underestimated by 7.8% in the case study.
隔震结构中的隔震单元在风荷载作用下应具有剩余屈服强度。隔震界面必须具有足够的强度,以便在风荷载作用下处于弹性状态。这就需要准确评估风引起的基底剪力。最初,为了计算基底隔离建筑的等效静风荷载(ESWL)和基底剪力,通过与响应历史分析结果的比较,研究了惯性风荷载(IWL)法和基于 IWL 法简化的中国荷载规范(CLC)法的有效性。对比分析表明,IWL 方法在评估基底隔震建筑的 ESWL 和基底剪力时更为准确,而 CLC 方法则由于以下原因而低估了 ESWL 和基底剪力:基本模态形状不准确、峰值系数降低、遗漏了隔震界面的 ESWL 贡献以及均匀质量分布假设存在缺陷。随后,提出了一种结合指数模态形状和第一模态广义质量修正系数的改进型 CLC 方法,并通过案例研究进行了验证。在案例研究中,与 CLC 方法相比,改进的 CLC 方法计算出的波动基底剪力增加了 10%。最后,通过设计质量换算系数,提出的方法进一步考虑了非均匀分布质量的影响,案例研究也验证了这一方法。如果不考虑非均匀质量的影响,案例研究中的波动基底剪力将被低估 7.8%。
{"title":"An improved Chinese load code method for the evaluation of wind‐induced base shear force on base‐isolated buildings","authors":"Hehong Zhou, Wenchen Lie","doi":"10.1002/tal.2173","DOIUrl":"https://doi.org/10.1002/tal.2173","url":null,"abstract":"The isolator units in a seismically isolated structure shall have a surplus yield strength under wind loads. The isolation interface must have enough strength to state at an elastic stage under wind loads. This necessitates an accurate evaluation of wind‐induced base shear force. Initially, to calculate the equivalent static wind load (ESWL) and the base shear force of a base‐isolated building, the validity of the inertial wind load (IWL) method and Chinese load code (CLC) method, the simplification based on the IWL method, are examined via comparison with response‐history analysis results. Comparative analysis reveals that the IWL method was more accurate in evaluating the ESWL and the base shear force of base‐isolated building, while the CLC method underestimated them due to the following reasons: inaccurate fundamental modal shape, a reduced peak factor, the omission of the ESWL contribution from the isolation interface, and flawed assumptions of uniform mass distribution. Subsequently, an improved CLC method that combined the exponential modal shape and first modal generalized mass modification coefficient is proposed and verified by a case study. Compared with the CLC method, the fluctuating base shear force calculated by the improved CLC method increased by 10% in the case study. Finally, the effect of non‐uniformly distributed mass is further considered in the proposed method by devising a mass conversion coefficient, and the case study has also validated this method. Without considering the effect of the non‐uniform mass, the fluctuating base shear force will be underestimated by 7.8% in the case study.","PeriodicalId":501238,"journal":{"name":"The Structural Design of Tall and Special Buildings","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142265365","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Enhancing Concrete Performance with Waste Foundry Sand Using Ternary Blended Mixes of Ordinary Portland Cement, Silica Fume, and Ground Granulated Blast Furnace Slag 利用普通硅酸盐水泥、硅灰和磨细高炉矿渣的三元混合料提高废铸造砂的混凝土性能
Pub Date : 2024-09-13 DOI: 10.1002/tal.2180
S. Yamini Roja, K. Murali, V. M. Shanthi
Mineral admixtures play an important part in improving the strength characteristics of concrete. This manuscript presents the incorporation of silica fume (SF) and ground granulated blast furnace slag into the concrete mix to decrease the cement content and enhance the strength and concrete's durability. In addition, river sand deposits have started to dry up. Also, eco‐friendly disposal of industrial wastes acts as a major threat to industries. Hence, the use of waste foundry sand (WFS) and M‐sand (MS) as fine aggregate is attempted in this study. In the first phase of this research work, concrete specimens have been prepared by partially replaced cement with 0%, 10%, 20%, 30%, and 40% by Ground Granulated Blast Furnace Slag (GGBFS) and 0%, 5%, 10%, and 15% by SF to find their optimum replacements in Ternary Blended Concrete (TBC). In the second phase, concrete specimens replaced with 0%, 10%, 20%, 30%, and 40% by WFS for fine aggregate (MS) were prepared and found optimum usage of foundry sand in waste foundry sand concrete (WFSC). In the third phase, a ternary blended green concrete (TBGC) was prepared by partially replaced cement with 30% GGBFS and 10% SF and replaced MS with 30% WFS and conducted strength (flexural strength, compressive and split tensile strength) and durability (acid and sulfate attack) studies. The above combination was found to be a promising way for the development of environmentally friendly concrete.
矿物掺合料在提高混凝土强度特性方面发挥着重要作用。本手稿介绍了在混凝土拌合物中掺入硅灰(SF)和磨细高炉矿渣,以降低水泥含量,提高混凝土强度和耐久性的方法。此外,河砂储量已开始枯竭。此外,工业废物的环保处理也对工业构成了重大威胁。因此,本研究尝试使用废铸造砂(WFS)和中砂(MS)作为细骨料。在研究工作的第一阶段,我们制备了混凝土试样,用 0%、10%、20%、30% 和 40% 的磨细高炉矿渣(GGBFS)和 0%、5%、10% 和 15% 的 SF 部分替代水泥,以找出它们在三元掺合料混凝土(TBC)中的最佳替代物。在第二阶段,制备了以 0%、10%、20%、30% 和 40% 的 WFS 取代细骨料(MS)的混凝土试样,并找到了废铸造砂混凝土(WFSC)中铸造砂的最佳使用方法。第三阶段,制备了一种三元混合绿色混凝土(TBGC),用 30% 的 GGBFS 和 10% 的 SF 部分替代水泥,用 30% 的 WFS 替代 MS,并进行了强度(抗折强度、抗压强度和劈裂拉伸强度)和耐久性(酸和硫酸盐侵蚀)研究。研究发现,上述组合是开发环境友好型混凝土的一种可行方法。
{"title":"Enhancing Concrete Performance with Waste Foundry Sand Using Ternary Blended Mixes of Ordinary Portland Cement, Silica Fume, and Ground Granulated Blast Furnace Slag","authors":"S. Yamini Roja, K. Murali, V. M. Shanthi","doi":"10.1002/tal.2180","DOIUrl":"https://doi.org/10.1002/tal.2180","url":null,"abstract":"Mineral admixtures play an important part in improving the strength characteristics of concrete. This manuscript presents the incorporation of silica fume (SF) and ground granulated blast furnace slag into the concrete mix to decrease the cement content and enhance the strength and concrete's durability. In addition, river sand deposits have started to dry up. Also, eco‐friendly disposal of industrial wastes acts as a major threat to industries. Hence, the use of waste foundry sand (WFS) and M‐sand (MS) as fine aggregate is attempted in this study. In the first phase of this research work, concrete specimens have been prepared by partially replaced cement with 0%, 10%, 20%, 30%, and 40% by Ground Granulated Blast Furnace Slag (GGBFS) and 0%, 5%, 10%, and 15% by SF to find their optimum replacements in Ternary Blended Concrete (TBC). In the second phase, concrete specimens replaced with 0%, 10%, 20%, 30%, and 40% by WFS for fine aggregate (MS) were prepared and found optimum usage of foundry sand in waste foundry sand concrete (WFSC). In the third phase, a ternary blended green concrete (TBGC) was prepared by partially replaced cement with 30% GGBFS and 10% SF and replaced MS with 30% WFS and conducted strength (flexural strength, compressive and split tensile strength) and durability (acid and sulfate attack) studies. The above combination was found to be a promising way for the development of environmentally friendly concrete.","PeriodicalId":501238,"journal":{"name":"The Structural Design of Tall and Special Buildings","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142265364","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Prediction of wind pressures on supertall buildings based on proper orthogonal decomposition and machine learning 基于适当正交分解和机器学习的超高层建筑风压预测
Pub Date : 2024-09-11 DOI: 10.1002/tal.2174
Jia‐Xing Huang, Qiu‐Sheng Li, Xu‐Liang Han
Detailed wind pressure information plays a critical role in the accurate estimation of wind loads on high‐rise buildings, especially for complex‐shaped supertall buildings. However, owing to the limited internal space of a scaled building model and the capacity of data‐acquisition devices, it is often difficult to acquire the wind pressures at all positions of interest on the entire model in wind tunnel testing. To this end, a novel approach that combines the proper orthogonal decomposition (POD) and machine learning (ML) is presented in this paper for the prediction of wind pressure time series (WPTS) on supertall building models in wind tunnel testing. In this approach, the prediction of WPTS is converted into the estimation of several main eigenmodes and mean wind pressures by combining the POD with ML. This strategy can effectively reduce the computational effort compared to the direct prediction of WPTS. A combined ML model consisting of the Gaussian process regression (GPR), decision tree regression (DTR), and random forest (RF) (i.e., POD‐GPR‐DTR‐RF model) is utilized for the prediction of eigenmodes and mean wind pressures. Wind pressure records from a wind tunnel experiment of a 600‐m‐high building are employed to verify the accuracy and effectiveness of the presented approach. The results show that the combined ML model (i.e., POD‐GPR‐DTR‐RF model) developed based on the proposed approach performs satisfactorily in the prediction of WPTS and outperforms the conventional method that combines POD with backpropagation neural network model (i.e., POD‐BPNN model), demonstrating that the proposed approach is an effective tool for prediction of WPTS on supertall buildings.
详细的风压信息对于准确估算高层建筑,尤其是形状复杂的超高层建筑的风荷载起着至关重要的作用。然而,由于缩尺建筑模型的内部空间和数据采集设备的能力有限,在风洞试验中往往难以获取整个模型上所有相关位置的风压。为此,本文提出了一种结合适当正交分解(POD)和机器学习(ML)的新方法,用于预测风洞试验中超高层建筑模型的风压时间序列(WPTS)。在这种方法中,通过将 POD 与 ML 相结合,将 WPTS 预测转换为几个主要特征模式和平均风压的估计。与直接预测 WPTS 相比,这种策略可以有效减少计算量。由高斯过程回归(GPR)、决策树回归(DTR)和随机森林(RF)组成的组合 ML 模型(即 POD-GPR-DTR-RF 模型)被用于预测特征模式和平均风压。为了验证该方法的准确性和有效性,我们使用了 600 米高建筑物风洞实验的风压记录。结果表明,基于所提方法开发的组合 ML 模型(即 POD-GPR-DTR-RF 模型)在预测 WPTS 方面表现令人满意,并且优于将 POD 与反向传播神经网络模型相结合的传统方法(即 POD-BPNN 模型),这表明所提方法是预测超高层建筑 WPTS 的有效工具。
{"title":"Prediction of wind pressures on supertall buildings based on proper orthogonal decomposition and machine learning","authors":"Jia‐Xing Huang, Qiu‐Sheng Li, Xu‐Liang Han","doi":"10.1002/tal.2174","DOIUrl":"https://doi.org/10.1002/tal.2174","url":null,"abstract":"Detailed wind pressure information plays a critical role in the accurate estimation of wind loads on high‐rise buildings, especially for complex‐shaped supertall buildings. However, owing to the limited internal space of a scaled building model and the capacity of data‐acquisition devices, it is often difficult to acquire the wind pressures at all positions of interest on the entire model in wind tunnel testing. To this end, a novel approach that combines the proper orthogonal decomposition (POD) and machine learning (ML) is presented in this paper for the prediction of wind pressure time series (WPTS) on supertall building models in wind tunnel testing. In this approach, the prediction of WPTS is converted into the estimation of several main eigenmodes and mean wind pressures by combining the POD with ML. This strategy can effectively reduce the computational effort compared to the direct prediction of WPTS. A combined ML model consisting of the Gaussian process regression (GPR), decision tree regression (DTR), and random forest (RF) (i.e., POD‐GPR‐DTR‐RF model) is utilized for the prediction of eigenmodes and mean wind pressures. Wind pressure records from a wind tunnel experiment of a 600‐m‐high building are employed to verify the accuracy and effectiveness of the presented approach. The results show that the combined ML model (i.e., POD‐GPR‐DTR‐RF model) developed based on the proposed approach performs satisfactorily in the prediction of WPTS and outperforms the conventional method that combines POD with backpropagation neural network model (i.e., POD‐BPNN model), demonstrating that the proposed approach is an effective tool for prediction of WPTS on supertall buildings.","PeriodicalId":501238,"journal":{"name":"The Structural Design of Tall and Special Buildings","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142188808","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The fiber hinge model for unbonded post‐tensioned beam‐column connections 无粘结后张法梁柱连接的纤维铰模型
Pub Date : 2024-09-10 DOI: 10.1002/tal.2176
Hu Qi, Yelei Shen, Haishan Guo, Wenxuan Zhang, Zheng Lu
The precast concrete frame with unbonded post‐tensioned beam‐column connections (UPBC) has been emphasized in recent years for it is capable of sustaining a design‐basis earthquake with minor damage. The fiber hinge model (FHM), which is a simple and effective approach, is proposed in this paper for the simulation of UPBC. In the FHM, the mild steels and prestressed tendons crossing the interface are integrated into one element. The mechanism and behavior of the FHM are presented in this paper. The proposed model, which is developed in OpenSees, has been validated by tests, and the FHM is able to accurately describe the shift of compressive center induced by the opening of the interface between the precast beam and column, as well as “beam elongation effects.”
采用无粘结后张法梁柱连接(UPBC)的预制混凝土框架近年来受到重视,因为这种框架能够承受设计基准地震,且损坏程度较轻。本文提出的纤维铰模型(FHM)是一种简单有效的方法,用于模拟 UPBC。在 FHM 中,穿过界面的低碳钢和预应力筋被整合为一个元素。本文介绍了 FHM 的机理和行为。本文提出的模型是在 OpenSees 中开发的,已经过测试验证,FHM 能够准确描述预制梁和柱之间的界面打开所引起的受压中心偏移,以及 "梁伸长效应"。
{"title":"The fiber hinge model for unbonded post‐tensioned beam‐column connections","authors":"Hu Qi, Yelei Shen, Haishan Guo, Wenxuan Zhang, Zheng Lu","doi":"10.1002/tal.2176","DOIUrl":"https://doi.org/10.1002/tal.2176","url":null,"abstract":"The precast concrete frame with unbonded post‐tensioned beam‐column connections (UPBC) has been emphasized in recent years for it is capable of sustaining a design‐basis earthquake with minor damage. The fiber hinge model (FHM), which is a simple and effective approach, is proposed in this paper for the simulation of UPBC. In the FHM, the mild steels and prestressed tendons crossing the interface are integrated into one element. The mechanism and behavior of the FHM are presented in this paper. The proposed model, which is developed in OpenSees, has been validated by tests, and the FHM is able to accurately describe the shift of compressive center induced by the opening of the interface between the precast beam and column, as well as “beam elongation effects.”","PeriodicalId":501238,"journal":{"name":"The Structural Design of Tall and Special Buildings","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142188811","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A vector‐valued ground motion intensity measure for base‐isolated buildings in far‐field regions 远场区域基底隔离建筑物的矢量值地动强度测量方法
Pub Date : 2024-09-09 DOI: 10.1002/tal.2168
Necmettin Güneş
In this study, the effects of the spectral acceleration at the superstructure first‐mode period on the isolator displacement are investigated for far‐field ground motions. For this purpose, two different base‐isolated models are subjected to 165 far‐field ground motions. It is demonstrated that considering the spectral acceleration at the superstructure first‐mode period, besides that at the effective period, improves the estimation accuracy of isolator displacement. ASCE 7‐22 modifies the scaling period range to consider the superstructure first mode period and proposes the new period range from the superstructure first‐mode period to the 1.25 times effective period. In the ASCE 7‐22, the same weight factor is used for the whole period range. However, the present study shows that adding the superstructure first‐mode related period range with appropriate weight factor to the effective period‐based scaling range decreases the dispersion of isolator displacement in the nonlinear response history analyses (NRH). Then, to overcome the spectral shape effects on the fragility curves, a vector‐valued intensity measure parameter is obtained by combining spectral acceleration at the effective period and reduced spectral acceleration at the superstructure first‐mode period. The optimum contribution factor for the spectral acceleration at the superstructure first‐mode period is defined as the ratio of the superstructure first‐mode period to the effective period. The article shows that the proposed parameter is efficient and sufficient to be used as an intensity measure for far‐field ground motions. Furthermore, regression analysis results indicate that this vector‐valued intensity measure parameter correlates well with the isolator displacement. Further, the article shows that using the proposed IM parameter in the fragility curves makes the collapse margin ratio of these curves less sensitive to the spectral shape of the selected ground motions.
在本研究中,研究了上部结构第一模态周期的频谱加速度对远场地面运动中隔振器位移的影响。为此,对两种不同的基座隔震模型进行了 165 次远场地面运动试验。结果表明,除有效周期外,考虑上部结构第一模态周期的频谱加速度可提高隔震器位移的估算精度。ASCE 7-22 修改了缩放周期范围以考虑上部结构一模周期,并提出了从上部结构一模周期到 1.25 倍有效周期的新周期范围。在 ASCE 7-22 中,整个周期范围使用相同的权重系数。然而,本研究表明,在基于有效周期的缩放范围内添加与上部结构首模相关的周期范围并配以适当的权重系数,可降低非线性响应历史分析(NRH)中隔震器位移的离散性。然后,为了克服脆性曲线上的频谱形状效应,通过结合有效周期的频谱加速度和上部结构第一模态周期的减小频谱加速度,得到一个矢量值强度测量参数。上部结构首模周期频谱加速度的最佳贡献系数定义为上部结构首模周期与有效周期之比。文章表明,所提出的参数是有效的,足以用作远场地动的强度测量。此外,回归分析结果表明,该矢量值烈度测量参数与隔震层位移有很好的相关性。此外,文章还表明,在脆性曲线中使用所提出的 IM 参数可使这些曲线的坍塌裕度比对所选地面运动的频谱形状不那么敏感。
{"title":"A vector‐valued ground motion intensity measure for base‐isolated buildings in far‐field regions","authors":"Necmettin Güneş","doi":"10.1002/tal.2168","DOIUrl":"https://doi.org/10.1002/tal.2168","url":null,"abstract":"In this study, the effects of the spectral acceleration at the superstructure first‐mode period on the isolator displacement are investigated for far‐field ground motions. For this purpose, two different base‐isolated models are subjected to 165 far‐field ground motions. It is demonstrated that considering the spectral acceleration at the superstructure first‐mode period, besides that at the effective period, improves the estimation accuracy of isolator displacement. ASCE 7‐22 modifies the scaling period range to consider the superstructure first mode period and proposes the new period range from the superstructure first‐mode period to the 1.25 times effective period. In the ASCE 7‐22, the same weight factor is used for the whole period range. However, the present study shows that adding the superstructure first‐mode related period range with appropriate weight factor to the effective period‐based scaling range decreases the dispersion of isolator displacement in the nonlinear response history analyses (NRH). Then, to overcome the spectral shape effects on the fragility curves, a vector‐valued intensity measure parameter is obtained by combining spectral acceleration at the effective period and reduced spectral acceleration at the superstructure first‐mode period. The optimum contribution factor for the spectral acceleration at the superstructure first‐mode period is defined as the ratio of the superstructure first‐mode period to the effective period. The article shows that the proposed parameter is efficient and sufficient to be used as an intensity measure for far‐field ground motions. Furthermore, regression analysis results indicate that this vector‐valued intensity measure parameter correlates well with the isolator displacement. Further, the article shows that using the proposed IM parameter in the fragility curves makes the collapse margin ratio of these curves less sensitive to the spectral shape of the selected ground motions.","PeriodicalId":501238,"journal":{"name":"The Structural Design of Tall and Special Buildings","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142188812","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Seismic performance of joint between steel H‐beam and rectangular concrete‐filled hot‐rolled‐steel tubular column 钢 H 型梁与矩形混凝土填充热轧钢管柱连接处的抗震性能
Pub Date : 2024-09-06 DOI: 10.1002/tal.2179
Hanqin Wang, Qing Jiang, Zhipeng Huang, Junqi Huang, Xun Chong
In this paper, a new connection between the H‐beam and rectangular concrete‐filled hot‐rolled‐steel tubular column (CFHRSTC) was proposed to prevent the steel beam‐column joint protruded from the inside wall in residential buildings. The quasi‐static test and finite element analysis were conducted on four new joints to study the influence of the haunch stiffener configuration, internal steel plate thickness, and axial force on the failure mode, load‐carrying capacity, ductility, energy dissipating capacity, and stiffness degradation of the joint. The results revealed that the hysteretic curve of every joint was full. The damage to the joint was concentrated in the H‐beam, and the CFHRSTC remained elastic. The joint configuration could realize a weak beam‐strong column and joint core connection. Using the haunch stiffener on two sides of the H‐beam flange could effectively optimize load transfer at the end of the H‐beam and joint core. As the axial force increased, the ultimate load‐carrying capacity and ductility gradually decreased. Reducing the thickness of the internal steel plate did not significantly influence the seismic performance of the joint. Compared with the use of cover plate joints, the use of haunch stiffeners can effectively enhance the seismic performance of joints.
本文提出了一种 H 型钢与矩形混凝土填充热轧钢管柱(CFHRSTC)之间的新型连接,以防止住宅建筑中钢梁-柱连接处从内墙突出。对四种新型接头进行了准静力试验和有限元分析,研究了支撑加劲件配置、内部钢板厚度和轴向力对接头破坏模式、承载能力、延性、耗能能力和刚度退化的影响。结果表明,每个接头的滞后曲线都是饱满的。接头的损坏集中在 H 型梁,而 CFHRSTC 仍保持弹性。该连接构造可实现弱梁-强柱和连接核心筒的连接。在 H 型梁翼缘板两侧使用拱形加劲件可有效优化 H 型梁端部和连接核心筒的荷载传递。随着轴向力的增加,极限承载能力和延性逐渐降低。减小内部钢板的厚度对接头的抗震性能没有明显影响。与使用盖板连接相比,使用拱形加劲件可有效提高连接的抗震性能。
{"title":"Seismic performance of joint between steel H‐beam and rectangular concrete‐filled hot‐rolled‐steel tubular column","authors":"Hanqin Wang, Qing Jiang, Zhipeng Huang, Junqi Huang, Xun Chong","doi":"10.1002/tal.2179","DOIUrl":"https://doi.org/10.1002/tal.2179","url":null,"abstract":"In this paper, a new connection between the H‐beam and rectangular concrete‐filled hot‐rolled‐steel tubular column (CFHRSTC) was proposed to prevent the steel beam‐column joint protruded from the inside wall in residential buildings. The quasi‐static test and finite element analysis were conducted on four new joints to study the influence of the haunch stiffener configuration, internal steel plate thickness, and axial force on the failure mode, load‐carrying capacity, ductility, energy dissipating capacity, and stiffness degradation of the joint. The results revealed that the hysteretic curve of every joint was full. The damage to the joint was concentrated in the H‐beam, and the CFHRSTC remained elastic. The joint configuration could realize a weak beam‐strong column and joint core connection. Using the haunch stiffener on two sides of the H‐beam flange could effectively optimize load transfer at the end of the H‐beam and joint core. As the axial force increased, the ultimate load‐carrying capacity and ductility gradually decreased. Reducing the thickness of the internal steel plate did not significantly influence the seismic performance of the joint. Compared with the use of cover plate joints, the use of haunch stiffeners can effectively enhance the seismic performance of joints.","PeriodicalId":501238,"journal":{"name":"The Structural Design of Tall and Special Buildings","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142188813","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Research on seismic suppression performance of vertical circulation stereo garage based on friction damper and steel pipe 基于摩擦阻尼器和钢管的垂直循环立体车库抗震性能研究
Pub Date : 2024-09-05 DOI: 10.1002/tal.2177
Yang‐yang Guo, Zu‐zhi Tian, Xiang‐fan Wu, Li‐yuan Tan, Hao‐peng Li
The conventional vertical circulation stereo garage is susceptible to deformation and instability when subjected to extreme seismic loads and complex working conditions. The present study introduces the combination arrangement of steel pipe and friction damper to optimize vertical circulation stereo garage while also investigating their seismic suppression performance under three representative seismic waves (EL‐CNENTRO, TH1TG025(TH), and RH1TG025(RH)). The results showed that the garage structure hasbetter seismic suppression performance when the combination of steel pipes and friction dampers is applied in Scheme 4 compared to relying solely on diagonal tie rod, steel pipe or friction damper. And Scheme 4 achieves inhibition rates of up to 61.27%, 22.12%, 56.07%, and 12.84% for overall maximum deformation response, maximum Y‐direction deformation response, vertex acceleration response, and bottom shear response, respectively. This enhancement significantly improves the garage's seismic stability, providing valuable theoretical references for advancing the development and market promotion of vertical circulation stereo garages.
传统的垂直循环立体车库在极端地震荷载和复杂工况下容易发生变形和失稳。本研究介绍了钢管和摩擦阻尼器的组合布置,以优化垂直循环立体车库,同时还研究了其在三种代表性地震波(EL-CNENTRO、TH1TG025(TH)和 RH1TG025(RH))下的抗震性能。结果表明,与单纯依靠斜拉杆、钢管或摩擦阻尼器相比,方案 4 将钢管和摩擦阻尼器结合使用时,车库结构具有更好的抗震性能。方案 4 对整体最大变形响应、Y 方向最大变形响应、顶点加速度响应和底部剪切响应的抑制率分别高达 61.27%、22.12%、56.07% 和 12.84%。这一改进大大提高了车库的抗震稳定性,为推动垂直循环立体车库的发展和市场推广提供了有价值的理论参考。
{"title":"Research on seismic suppression performance of vertical circulation stereo garage based on friction damper and steel pipe","authors":"Yang‐yang Guo, Zu‐zhi Tian, Xiang‐fan Wu, Li‐yuan Tan, Hao‐peng Li","doi":"10.1002/tal.2177","DOIUrl":"https://doi.org/10.1002/tal.2177","url":null,"abstract":"The conventional vertical circulation stereo garage is susceptible to deformation and instability when subjected to extreme seismic loads and complex working conditions. The present study introduces the combination arrangement of steel pipe and friction damper to optimize vertical circulation stereo garage while also investigating their seismic suppression performance under three representative seismic waves (EL‐CNENTRO, TH1TG025(TH), and RH1TG025(RH)). The results showed that the garage structure hasbetter seismic suppression performance when the combination of steel pipes and friction dampers is applied in Scheme 4 compared to relying solely on diagonal tie rod, steel pipe or friction damper. And Scheme 4 achieves inhibition rates of up to 61.27%, 22.12%, 56.07%, and 12.84% for overall maximum deformation response, maximum Y‐direction deformation response, vertex acceleration response, and bottom shear response, respectively. This enhancement significantly improves the garage's seismic stability, providing valuable theoretical references for advancing the development and market promotion of vertical circulation stereo garages.","PeriodicalId":501238,"journal":{"name":"The Structural Design of Tall and Special Buildings","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142188850","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Analytical and numerical investigation of the seismic behavior of tubular web reduced beam section connections 管状腹板减小梁截面连接抗震性能的分析和数值研究
Pub Date : 2024-09-02 DOI: 10.1002/tal.2167
Ehsan Ekhveh, Rasoul Mirghaderi, Sina Kavei, Mehdi Ghassemieh, Farshid Rashidiyan
The reduced beam section (RBS) connections in steel structures are widely used to achieve sufficient ductility and avoid creating brittle failures in moment‐resisting frames. Compared to other types of connections, conventional RBS connections have the potential to reduce moment capacity and induce larger lateral deformation in the structure. In order to resolve this problem, novel forms of RBS connections have been proposed in recent years, such as tubular web RBS connections, which have shown a desirable performance under various loading conditions in previous studies. Therefore, this study conducted an analytic and numerical investigation of this connection under seismic loading. In this regard, the first step is to introduce the analytic equations related to the structural properties and stability of the reduced beam with the tubular web. Using these equations, a comprehensive procedure for the design of the tubular web RBS connections is presented. After that, a numerical model of the tubular web RBS connections is created and then analyzed under cyclic loading using the finite element method in ABAQUS software. Based on the results of this simulation, the suggested connection meets the criteria of valid international standards and can be used in the special moment‐resisting frame. In order to assess the impact of using the proposed connection in moment‐resisting frames, the performance of two 2D moment‐resisting frames with this connection is studied. This study shows that the maximum percentage increase in relative displacement caused by using tubular web RBS connections is 1.68%, whereas this figure rises to 10.6% when conventional RBS connections are used. Therefore, the designers can use tubular web RBS connections instead of conventional RBS connections to increase the lateral stability of the structure and control its lateral deflection due to the seismic loadings without having to increase the dimensions of the frame elements.
钢结构中的缩减梁截面(RBS)连接被广泛应用,以获得足够的延展性,避免在抗弯框架中产生脆性破坏。与其他类型的连接相比,传统的 RBS 连接可能会降低弯矩承载能力,并导致结构产生较大的侧向变形。为了解决这一问题,近年来有人提出了新型的 RBS 连接形式,如管状腹板 RBS 连接,在以往的研究中,这种连接形式在各种荷载条件下都表现出了理想的性能。因此,本研究对这种连接在地震荷载下的性能进行了分析和数值研究。在这方面,第一步是引入与带有管状腹板的减小梁的结构特性和稳定性相关的分析方程。利用这些方程,提出了管状腹板 RBS 连接设计的综合程序。随后,创建了管状腹板 RBS 连接的数值模型,并使用 ABAQUS 软件中的有限元法对其进行了循环载荷分析。根据模拟结果,建议的连接符合有效的国际标准标准,可用于特殊的抗弯矩框架。为了评估在力矩抵抗框架中使用建议的连接所产生的影响,研究了使用该连接的两个二维力矩抵抗框架的性能。研究结果表明,使用管状腹板 RBS 连接时,相对位移的最大增加百分比为 1.68%,而使用传统 RBS 连接时,这一数字上升到 10.6%。因此,设计人员可以使用管状腹板 RBS 连接件代替传统的 RBS 连接件,以提高结构的横向稳定性,控制地震荷载引起的横向挠度,而无需增加框架构件的尺寸。
{"title":"Analytical and numerical investigation of the seismic behavior of tubular web reduced beam section connections","authors":"Ehsan Ekhveh, Rasoul Mirghaderi, Sina Kavei, Mehdi Ghassemieh, Farshid Rashidiyan","doi":"10.1002/tal.2167","DOIUrl":"https://doi.org/10.1002/tal.2167","url":null,"abstract":"The reduced beam section (RBS) connections in steel structures are widely used to achieve sufficient ductility and avoid creating brittle failures in moment‐resisting frames. Compared to other types of connections, conventional RBS connections have the potential to reduce moment capacity and induce larger lateral deformation in the structure. In order to resolve this problem, novel forms of RBS connections have been proposed in recent years, such as tubular web RBS connections, which have shown a desirable performance under various loading conditions in previous studies. Therefore, this study conducted an analytic and numerical investigation of this connection under seismic loading. In this regard, the first step is to introduce the analytic equations related to the structural properties and stability of the reduced beam with the tubular web. Using these equations, a comprehensive procedure for the design of the tubular web RBS connections is presented. After that, a numerical model of the tubular web RBS connections is created and then analyzed under cyclic loading using the finite element method in ABAQUS software. Based on the results of this simulation, the suggested connection meets the criteria of valid international standards and can be used in the special moment‐resisting frame. In order to assess the impact of using the proposed connection in moment‐resisting frames, the performance of two 2D moment‐resisting frames with this connection is studied. This study shows that the maximum percentage increase in relative displacement caused by using tubular web RBS connections is 1.68%, whereas this figure rises to 10.6% when conventional RBS connections are used. Therefore, the designers can use tubular web RBS connections instead of conventional RBS connections to increase the lateral stability of the structure and control its lateral deflection due to the seismic loadings without having to increase the dimensions of the frame elements.","PeriodicalId":501238,"journal":{"name":"The Structural Design of Tall and Special Buildings","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142188851","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Equivalent static wind load based on displacement mode and load combination for high‐rise buildings 基于位移模式和荷载组合的高层建筑等效静风荷载
Pub Date : 2024-08-28 DOI: 10.1002/tal.2169
Haiwei Guan, Yuji Tian, Weihu Chen, Yuliang Qi
Under the action of the fluctuating wind load, the low frequency part produces background response to the structures, while the high frequency part produces resonance response to the structures. In structural design, equivalent static wind load is usually used to equate the fluctuating wind load. Although there are various methods of evaluating the equivalent static wind load, they did not consider the correlation between modal responses or considered them insufficiently. Therefore, in this paper, the correlation between modal response is considered to evaluate the equivalent static wind load, the displacement response is decomposed by proper orthogonal decomposition (POD) method, the correlation between modal displacement is removed, the equivalent static wind load is expressed in the form of displacement mode, and then the correlation between modal response is fully considered in the extreme value combination. This paper combines the equivalent static wind loads in order to make the wind resistance design more reasonable for high‐rise buildings. First, the formulas of equivalent static wind loads expressed by displacement modes of background and resonant response are deduced based on modal decomposition and POD method. Second, the combination formulas of square‐root‐of‐sum‐square (SRSS) and complete‐quadratic‐combination (CQC) rules for the equivalent static wind loads considering the mean wind loads are proposed. Both the linear combination formula of SRSS for the equivalent static wind load and the weighting factor expressions of background and resonance equivalent static wind load are given. Third, the accuracy and validity of the formulas of equivalent static wind load are verified by a wind tunnel pressure test of a high‐rise building. Finally, the simplified combination coefficient formulas for the equivalent static wind loads are proposed, and the combination of the high‐rise building base's fluctuating equivalent static wind loads of along‐wind direction, across‐wind direction, and torsional direction is analyzed.
在波动风荷载作用下,低频部分对结构产生背景响应,而高频部分对结构产生共振响应。在结构设计中,通常使用等效静风荷载来等效波动风荷载。虽然有多种评估等效静风荷载的方法,但都没有考虑模态响应之间的相关性,或者考虑得不够充分。因此,本文在评估等效静风荷载时考虑了模态响应之间的相关性,采用适当的正交分解(POD)方法对位移响应进行分解,去除模态位移之间的相关性,以位移模态的形式表示等效静风荷载,然后在极值组合中充分考虑模态响应之间的相关性。本文结合等效静风荷载,使高层建筑的抗风设计更加合理。首先,基于模态分解法和 POD 法,推导出以背景位移模态和共振响应表示的等效静风荷载公式。其次,提出了考虑平均风荷载的等效静风荷载平方根求和平方规则(SRSS)和完全二次方规则(CQC)的组合公式。给出了等效静风荷载 SRSS 的线性组合公式以及背景和共振等效静风荷载的权重系数表达式。第三,通过高层建筑的风洞压力试验验证了等效静风荷载公式的准确性和有效性。最后,提出了简化的等效静风荷载组合系数公式,并对高层建筑基座沿风向、跨风向和扭转方向的波动等效静风荷载组合进行了分析。
{"title":"Equivalent static wind load based on displacement mode and load combination for high‐rise buildings","authors":"Haiwei Guan, Yuji Tian, Weihu Chen, Yuliang Qi","doi":"10.1002/tal.2169","DOIUrl":"https://doi.org/10.1002/tal.2169","url":null,"abstract":"Under the action of the fluctuating wind load, the low frequency part produces background response to the structures, while the high frequency part produces resonance response to the structures. In structural design, equivalent static wind load is usually used to equate the fluctuating wind load. Although there are various methods of evaluating the equivalent static wind load, they did not consider the correlation between modal responses or considered them insufficiently. Therefore, in this paper, the correlation between modal response is considered to evaluate the equivalent static wind load, the displacement response is decomposed by proper orthogonal decomposition (POD) method, the correlation between modal displacement is removed, the equivalent static wind load is expressed in the form of displacement mode, and then the correlation between modal response is fully considered in the extreme value combination. This paper combines the equivalent static wind loads in order to make the wind resistance design more reasonable for high‐rise buildings. First, the formulas of equivalent static wind loads expressed by displacement modes of background and resonant response are deduced based on modal decomposition and POD method. Second, the combination formulas of square‐root‐of‐sum‐square (SRSS) and complete‐quadratic‐combination (CQC) rules for the equivalent static wind loads considering the mean wind loads are proposed. Both the linear combination formula of SRSS for the equivalent static wind load and the weighting factor expressions of background and resonance equivalent static wind load are given. Third, the accuracy and validity of the formulas of equivalent static wind load are verified by a wind tunnel pressure test of a high‐rise building. Finally, the simplified combination coefficient formulas for the equivalent static wind loads are proposed, and the combination of the high‐rise building base's fluctuating equivalent static wind loads of along‐wind direction, across‐wind direction, and torsional direction is analyzed.","PeriodicalId":501238,"journal":{"name":"The Structural Design of Tall and Special Buildings","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142188852","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
The Structural Design of Tall and Special Buildings
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1