Past anthropogenic land use change caused a regime shift of the fluvial response to Holocene climate change in the Chinese Loess Plateau

IF 2.8 2区 地球科学 Q2 GEOGRAPHY, PHYSICAL Earth Surface Dynamics Pub Date : 2024-01-18 DOI:10.5194/esurf-12-163-2024
Hao Chen, Xianyan Wang, Yanyan Yu, Huayu Lu, Ronald Van Balen
{"title":"Past anthropogenic land use change caused a regime shift of the fluvial response to Holocene climate change in the Chinese Loess Plateau","authors":"Hao Chen, Xianyan Wang, Yanyan Yu, Huayu Lu, Ronald Van Balen","doi":"10.5194/esurf-12-163-2024","DOIUrl":null,"url":null,"abstract":"Abstract. The Wei River catchment in the southern part of the Chinese Loess Plateau (CLP) is one of the centers of the agricultural revolution in China. The area has experienced intense land use changes since ∼6000 BCE, which makes it an ideal place to study the response of fluvial systems to past anthropogenic land cover change (ALCC). We apply a numerical landscape evolution model that combines the Landlab landscape evolution model with an evapotranspiration model to investigate the direct and indirect effects of ALCC on hydrological and morphological processes in the Wei River catchment since the mid-Holocene. The results show that ALCC has not only led to changes in discharge and sediment load in the catchment but also affected their sensitivity to climate change. When the proportion of agricultural land area exceeded 50 % (around 1000 BCE), the sensitivity of discharge and sediment yield to climate change increased abruptly indicating a regime change in the fluvial catchment. This was associated with a large sediment pulse in the lower reaches. The model simulation results also show a link between human settlement, ALCC and floodplain development: changes in agricultural land use led to downstream sediment accumulation and floodplain development, which in turn resulted in further spatial expansion of agriculture and human settlement.","PeriodicalId":48749,"journal":{"name":"Earth Surface Dynamics","volume":"48 1","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2024-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Earth Surface Dynamics","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.5194/esurf-12-163-2024","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOGRAPHY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract. The Wei River catchment in the southern part of the Chinese Loess Plateau (CLP) is one of the centers of the agricultural revolution in China. The area has experienced intense land use changes since ∼6000 BCE, which makes it an ideal place to study the response of fluvial systems to past anthropogenic land cover change (ALCC). We apply a numerical landscape evolution model that combines the Landlab landscape evolution model with an evapotranspiration model to investigate the direct and indirect effects of ALCC on hydrological and morphological processes in the Wei River catchment since the mid-Holocene. The results show that ALCC has not only led to changes in discharge and sediment load in the catchment but also affected their sensitivity to climate change. When the proportion of agricultural land area exceeded 50 % (around 1000 BCE), the sensitivity of discharge and sediment yield to climate change increased abruptly indicating a regime change in the fluvial catchment. This was associated with a large sediment pulse in the lower reaches. The model simulation results also show a link between human settlement, ALCC and floodplain development: changes in agricultural land use led to downstream sediment accumulation and floodplain development, which in turn resulted in further spatial expansion of agriculture and human settlement.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
过去人为土地利用变化导致中国黄土高原全新世气候变化的河川响应机制转变
摘要中国黄土高原南部的渭河流域是中国农业革命的中心之一。自公元前 6000 年以来,该地区经历了激烈的土地利用变化,这使其成为研究河流系统对过去人为土地覆被变化(ALCC)响应的理想场所。我们应用结合了 Landlab 景观演变模型和蒸散模型的数值景观演变模型,研究了全新世中期以来 ALCC 对渭河流域水文和形态过程的直接和间接影响。结果表明,ALCC 不仅导致了流域径流量和泥沙量的变化,还影响了它们对气候变化的敏感性。当农业用地面积比例超过 50%(公元前 1000 年左右)时,排水量和泥沙量对气候变化的敏感性骤然增加,表明该流域发生了制度变化。这与下游出现大量泥沙脉冲有关。模型模拟结果还显示了人类定居、ALCC 和洪泛区开发之间的联系:农业用地的变化导致下游泥沙淤积和洪泛区开发,这反过来又进一步扩大了农业和人类定居的空间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Earth Surface Dynamics
Earth Surface Dynamics GEOGRAPHY, PHYSICALGEOSCIENCES, MULTIDISCI-GEOSCIENCES, MULTIDISCIPLINARY
CiteScore
5.40
自引率
5.90%
发文量
56
审稿时长
20 weeks
期刊介绍: Earth Surface Dynamics (ESurf) is an international scientific journal dedicated to the publication and discussion of high-quality research on the physical, chemical, and biological processes shaping Earth''s surface and their interactions on all scales.
期刊最新文献
Exotic tree plantations in the Chilean Coastal Range: balancing the effects of discrete disturbances, connectivity, and a persistent drought on catchment erosion Role of the forcing sources in morphodynamic modelling of an embayed beach Equilibrium distance from long-range dune interactions An empirically-derived hydraulic head model controlling water storage and outflow over a decade in degraded permafrost rock slopes (Zugspitze, D/A) Geomorphic imprint of high mountain floods: Insight from the 2022 hydrological extreme across the Upper Indus terrain in NW Himalayas
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1