Pub Date : 2024-07-05DOI: 10.5194/esurf-12-841-2024
Violeta Tolorza, Christian H. Mohr, Mauricio Zambrano-Bigiarini, Benjamín Sotomayor, Dagoberto Poblete-Caballero, Sebastien Carretier, Mauricio Galleguillos, Oscar Seguel
Abstract. The Chilean Coastal Range, located in the Mediterranean segment of Chile, is a soil-mantled landscape with the potential to store valuable freshwater supplies and support a biodiverse native forest. Nevertheless, human intervention has been increasing soil erosion for ∼ 200 years, culminating in the intense management of exotic tree plantations throughout the last ∼ 45 years. At the same time, this landscape has been severely affected by a prolonged megadrought. As a result, this combination of stressors complicates disentangling the effects of anthropogenic disturbances and hydroclimatic trends on sediment fluxes at the catchment scale. In this study, we calculate decennial catchment erosion rates from suspended-sediment loads and compare them with a millennial catchment denudation rate estimated from detrital 10Be. We then contrast both of these rates with the effects of discrete anthropogenic-disturbance events and hydroclimatic trends. Erosion and denudation rates are similar in magnitude on decennial and millennial timescales, i.e., 0.018 ± 0.005 and 0.024 ± 0.004 mm yr−1, respectively. Recent human-made disturbances include logging operations throughout all seasons and a dense network of forestry roads, thereby increasing structural sediment connectivity. Further disturbances include two widespread wildfires (2015 and 2017) and an earthquake with an Mw value of 8.8 in 2010. We observe decreased suspended-sediment loads during the wet seasons for the period 1986–2018, coinciding with declining streamflow, baseflow, and rainfall. The low millennial denudation rate aligns with a landscape dominated by slow diffusive soil creep. However, the low decennial erosion rate and the decrease in suspended sediment disagree with the expected effect of intense anthropogenic disturbances and increased structural (sediment) connectivity. Such a paradox suggests that suspended-sediment loads, and thus respective catchment erosion, are underestimated and that decennial sediment detachment and transport have been masked by decreasing rainfall and streamflow (i.e., weakened hydroclimatic drivers). Our findings indicate that human-made disturbances and hydrologic trends may result in opposite, partially offsetting effects on recent erosion, yet both contribute to landscape degradation.
{"title":"Exotic tree plantations in the Chilean Coastal Range: balancing the effects of discrete disturbances, connectivity, and a persistent drought on catchment erosion","authors":"Violeta Tolorza, Christian H. Mohr, Mauricio Zambrano-Bigiarini, Benjamín Sotomayor, Dagoberto Poblete-Caballero, Sebastien Carretier, Mauricio Galleguillos, Oscar Seguel","doi":"10.5194/esurf-12-841-2024","DOIUrl":"https://doi.org/10.5194/esurf-12-841-2024","url":null,"abstract":"Abstract. The Chilean Coastal Range, located in the Mediterranean segment of Chile, is a soil-mantled landscape with the potential to store valuable freshwater supplies and support a biodiverse native forest. Nevertheless, human intervention has been increasing soil erosion for ∼ 200 years, culminating in the intense management of exotic tree plantations throughout the last ∼ 45 years. At the same time, this landscape has been severely affected by a prolonged megadrought. As a result, this combination of stressors complicates disentangling the effects of anthropogenic disturbances and hydroclimatic trends on sediment fluxes at the catchment scale. In this study, we calculate decennial catchment erosion rates from suspended-sediment loads and compare them with a millennial catchment denudation rate estimated from detrital 10Be. We then contrast both of these rates with the effects of discrete anthropogenic-disturbance events and hydroclimatic trends. Erosion and denudation rates are similar in magnitude on decennial and millennial timescales, i.e., 0.018 ± 0.005 and 0.024 ± 0.004 mm yr−1, respectively. Recent human-made disturbances include logging operations throughout all seasons and a dense network of forestry roads, thereby increasing structural sediment connectivity. Further disturbances include two widespread wildfires (2015 and 2017) and an earthquake with an Mw value of 8.8 in 2010. We observe decreased suspended-sediment loads during the wet seasons for the period 1986–2018, coinciding with declining streamflow, baseflow, and rainfall. The low millennial denudation rate aligns with a landscape dominated by slow diffusive soil creep. However, the low decennial erosion rate and the decrease in suspended sediment disagree with the expected effect of intense anthropogenic disturbances and increased structural (sediment) connectivity. Such a paradox suggests that suspended-sediment loads, and thus respective catchment erosion, are underestimated and that decennial sediment detachment and transport have been masked by decreasing rainfall and streamflow (i.e., weakened hydroclimatic drivers). Our findings indicate that human-made disturbances and hydrologic trends may result in opposite, partially offsetting effects on recent erosion, yet both contribute to landscape degradation.","PeriodicalId":48749,"journal":{"name":"Earth Surface Dynamics","volume":"17 1","pages":""},"PeriodicalIF":3.4,"publicationDate":"2024-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141573883","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-26DOI: 10.5194/esurf-12-819-2024
Nil Carrion-Bertran, Albert Falqués, Francesca Ribas, Daniel Calvete, Rinse de Swart, Ruth Durán, Candela Marco-Peretó, Marta Marcos, Angel Amores, Tim Toomey, Àngels Fernández-Mora, Jorge Guillén
Abstract. The sensitivity of a 2DH coastal area (XBeach) and a reduced-complexity (Q2Dmorfo) morphodynamic model to using different forcing sources is studied. The models are tested by simulating the morphodynamic response of an embayed beach in the NW Mediterranean over a 6-month period. Wave and sea-level forcing from in situ data, propagated buoy measurements, and hindcasts, as well as combinations of these different data sources, are used, and the outputs are compared to in situ bathymetric measurements. Results show that when the two models are calibrated with in situ measurements, they accurately reproduce the morphodynamic evolution with a “good” Brier skill score (BSS). The calibration process reduces the errors by 65 %–85 % compared with the default setting. The wave data propagated from the buoy also produce reliable morphodynamic simulations but with a slight decrease in the BSS. Conversely, when the models are forced with hindcast wave data, the mismatch between the modelled and observed beach evolution increases. This is attributed to a large extent to biased mean directions in hindcast waves. Interestingly, in this small tide site, the accuracy of the simulations hardly depends on the sea-level data source, and using filtered or non-filtered tides also yields similar results. These results have implications for long-term morphodynamic studies, like those needed to validate models for climate change projections, emphasizing the need to use accurate forcing sources such as those obtained by propagating buoy data.
{"title":"Role of the forcing sources in morphodynamic modelling of an embayed beach","authors":"Nil Carrion-Bertran, Albert Falqués, Francesca Ribas, Daniel Calvete, Rinse de Swart, Ruth Durán, Candela Marco-Peretó, Marta Marcos, Angel Amores, Tim Toomey, Àngels Fernández-Mora, Jorge Guillén","doi":"10.5194/esurf-12-819-2024","DOIUrl":"https://doi.org/10.5194/esurf-12-819-2024","url":null,"abstract":"Abstract. The sensitivity of a 2DH coastal area (XBeach) and a reduced-complexity (Q2Dmorfo) morphodynamic model to using different forcing sources is studied. The models are tested by simulating the morphodynamic response of an embayed beach in the NW Mediterranean over a 6-month period. Wave and sea-level forcing from in situ data, propagated buoy measurements, and hindcasts, as well as combinations of these different data sources, are used, and the outputs are compared to in situ bathymetric measurements. Results show that when the two models are calibrated with in situ measurements, they accurately reproduce the morphodynamic evolution with a “good” Brier skill score (BSS). The calibration process reduces the errors by 65 %–85 % compared with the default setting. The wave data propagated from the buoy also produce reliable morphodynamic simulations but with a slight decrease in the BSS. Conversely, when the models are forced with hindcast wave data, the mismatch between the modelled and observed beach evolution increases. This is attributed to a large extent to biased mean directions in hindcast waves. Interestingly, in this small tide site, the accuracy of the simulations hardly depends on the sea-level data source, and using filtered or non-filtered tides also yields similar results. These results have implications for long-term morphodynamic studies, like those needed to validate models for climate change projections, emphasizing the need to use accurate forcing sources such as those obtained by propagating buoy data.","PeriodicalId":48749,"journal":{"name":"Earth Surface Dynamics","volume":"321 1","pages":""},"PeriodicalIF":3.4,"publicationDate":"2024-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141509574","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-20DOI: 10.5194/egusphere-2024-1634
Jean Vérité, Clément Narteau, Olivier Rozier, Jeanne Alkalla, Laurie Barrier, Sylvain Courrech du Pont
Abstract. Flow perturbations induced by dune topography affect sediment transport locally, but can also be felt over long distances altering the dynamics of isolated neighbouring dunes downstream. In order to work under optimal conditions that eliminate transverse flow components, collisions and mass exchange between dunes, we study here these long-range interactions using a 2D numerical model where two equal-sized dunes lying on a non-erodible bed are exposed to a symmetric reversing flow. Depending on the initial spacing, dunes either attract or repel each other, to eventually converge towards a steady-state spacing. This equilibrium distance decreases with flow strength and increases with period of flow reorientation and dune size. It is mainly controlled by the reversing dune shape and the structure of the turbulent wake it generates, which continuously modulates the mean shear stress on the downstream dune. Under multi-directional wind regimes, these long-range flow perturbations offer an alternative mechanism for wavelength selection in dune fields with non-erodible interdune areas. Within these dune fields, estimates of mean shear stress could be used to assess the relative migration rate and the state of attraction/repulsion between neighbouring dunes.
{"title":"Equilibrium distance from long-range dune interactions","authors":"Jean Vérité, Clément Narteau, Olivier Rozier, Jeanne Alkalla, Laurie Barrier, Sylvain Courrech du Pont","doi":"10.5194/egusphere-2024-1634","DOIUrl":"https://doi.org/10.5194/egusphere-2024-1634","url":null,"abstract":"<strong>Abstract.</strong> Flow perturbations induced by dune topography affect sediment transport locally, but can also be felt over long distances altering the dynamics of isolated neighbouring dunes downstream. In order to work under optimal conditions that eliminate transverse flow components, collisions and mass exchange between dunes, we study here these long-range interactions using a 2D numerical model where two equal-sized dunes lying on a non-erodible bed are exposed to a symmetric reversing flow. Depending on the initial spacing, dunes either attract or repel each other, to eventually converge towards a steady-state spacing. This equilibrium distance decreases with flow strength and increases with period of flow reorientation and dune size. It is mainly controlled by the reversing dune shape and the structure of the turbulent wake it generates, which continuously modulates the mean shear stress on the downstream dune. Under multi-directional wind regimes, these long-range flow perturbations offer an alternative mechanism for wavelength selection in dune fields with non-erodible interdune areas. Within these dune fields, estimates of mean shear stress could be used to assess the relative migration rate and the state of attraction/repulsion between neighbouring dunes.","PeriodicalId":48749,"journal":{"name":"Earth Surface Dynamics","volume":"70 1","pages":""},"PeriodicalIF":3.4,"publicationDate":"2024-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141509643","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-19DOI: 10.5194/egusphere-2024-1512
Riccardo Scandroglio, Samuel Weber, Till Rehm, Michael Krautblatter
Abstract. While recent permafrost degradation in Alpine peri- and paraglacial slopes has been documented in several studies, only restricted information is available on the respective hydrology. Water boosts permafrost degradation by advective heat transport and destabilizes periglacial mountain slopes. Even if multiple recent rock slope failures indicate the presence of water, only a few studies provide evidence of water availability and related hydrostatic pressures at bigger depths, showing a significant research gap. This study combines a unique decennial data set of meteorological data, snowmelt modeling, and discharge measurements from two rock fractures in a tunnel located ≈ 55 m under the permafrost-affected N-S facing Zugspitze Ridge (2815–2962 m asl). To decipher the hydrological properties of fractures, we analyze inputs, i.e., snowmelt and rainfall, and outputs, i.e., discharge from fractures, baseflow, and no-flow events, detecting flow anomalies. For summer precipitation events, we developed i) a uniform recession curve, ii) an empirical water storage model, and iii) an approximate hydraulic water pressure model according to Darcy’s falling-head law. Extreme events with up to 800 l/d and 58 l/h are likely to fully saturate the observed fractures with corresponding hydraulic heads of up to 40 ± 10 m and to increase fracture interconnectivity. The average daily discharge during snowmelt, 10 l/h, can lead to hydraulic heads up to 27 ± 6 m. Water dynamics suggest hydraulic conductivities in the range of 10−4 m/s, with variations according to the fracture’s saturation. E.g., no-flow and baseflow events indicate unsaturated and partially saturated conditions. Here, we show an empirical fluid flow approximation model of hydrostatic pressure regimes in high-alpine deep-bedrock fractures. Pressures from water accumulation in bedrock reach levels that can weaken or even destabilize rock slopes. This process can easily outpace thermal conductive warming of active layers in the foreseeable future, provide positive feedback on water infiltration, and is crucial for the stability of the rapidly warming alpine permafrost environments.
{"title":"An empirically-derived hydraulic head model controlling water storage and outflow over a decade in degraded permafrost rock slopes (Zugspitze, D/A)","authors":"Riccardo Scandroglio, Samuel Weber, Till Rehm, Michael Krautblatter","doi":"10.5194/egusphere-2024-1512","DOIUrl":"https://doi.org/10.5194/egusphere-2024-1512","url":null,"abstract":"<strong>Abstract.</strong> While recent permafrost degradation in Alpine peri- and paraglacial slopes has been documented in several studies, only restricted information is available on the respective hydrology. Water boosts permafrost degradation by advective heat transport and destabilizes periglacial mountain slopes. Even if multiple recent rock slope failures indicate the presence of water, only a few studies provide evidence of water availability and related hydrostatic pressures at bigger depths, showing a significant research gap. This study combines a unique decennial data set of meteorological data, snowmelt modeling, and discharge measurements from two rock fractures in a tunnel located ≈ 55 m under the permafrost-affected N-S facing Zugspitze Ridge (2815–2962 m asl). To decipher the hydrological properties of fractures, we analyze inputs, i.e., snowmelt and rainfall, and outputs, i.e., discharge from fractures, baseflow, and no-flow events, detecting flow anomalies. For summer precipitation events, we developed i) a uniform recession curve, ii) an empirical water storage model, and iii) an approximate hydraulic water pressure model according to Darcy’s falling-head law. Extreme events with up to 800 l/d and 58 l/h are likely to fully saturate the observed fractures with corresponding hydraulic heads of up to 40 ± 10 m and to increase fracture interconnectivity. The average daily discharge during snowmelt, 10 l/h, can lead to hydraulic heads up to 27 ± 6 m. Water dynamics suggest hydraulic conductivities in the range of 10−4 m/s, with variations according to the fracture’s saturation. E.g., no-flow and baseflow events indicate unsaturated and partially saturated conditions. Here, we show an empirical fluid flow approximation model of hydrostatic pressure regimes in high-alpine deep-bedrock fractures. Pressures from water accumulation in bedrock reach levels that can weaken or even destabilize rock slopes. This process can easily outpace thermal conductive warming of active layers in the foreseeable future, provide positive feedback on water infiltration, and is crucial for the stability of the rapidly warming alpine permafrost environments.","PeriodicalId":48749,"journal":{"name":"Earth Surface Dynamics","volume":"61 1","pages":""},"PeriodicalIF":3.4,"publicationDate":"2024-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141509644","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-18DOI: 10.5194/egusphere-2024-1618
Abhishek Kashyap, Kristen Cook, Mukunda Dev Behera
Abstract. The interaction of tectonics, surface processes, and climate extremes impacts how the landscape responds to extreme hydrological events. An anomalous precipitation event in 2022 occurred during the monsoon season along the lower reaches of the Upper Indus River, resulting in short-lived high-magnitude flooding and socioeconomic disruption downstream. To understand the spatial relationship between the geomorphic response and climatic controls of this flood event, as well as their primary triggers, we performed a landscape analysis using topographic metrics and quantified the causal association between hydro-climatic variables. Temperature anomalies in upstream glaciated sub-catchments had a considerable impact on snow cover distribution, based on our observations. As snow cover changed, glacial melt runoff rose, contributing to increased fluvial stream power after traversing higher-order reaches. The higher-order reaches of the Upper Indus River received an anomalously high amount of precipitation, which, when combined with substantial glacial and melt discharge, contributed to an extreme flood across the high-relief steep gradient channels. The flood-affected regions had a high mean basin ksn and SL-index, including numerous spikes in their magnitudes along their channel profiles downstream. To determine how the lower reaches of the Upper Indus River responded to this flood event, we employed the Enhanced Vegetation Index (EVI) and Normalized Difference Water Index (NDWI) as change indicator metrics. We observed an inverse causal influence of NDWI on EVI and a statistically significant relationship between anomalous stream power and relative EVI, suggesting that downstream channel morphology changed rapidly during this episodic event and highlighting EVI as a useful indicator of geomorphic change. We suggest that this extreme flood event is a result of the interaction of anomalous glacial melt and anomalous precipitation over a high-relief landscape, with a certain causal connection with anomalous temperature over the event duration. The synoptic observations suggest that this meteorological condition involves the interaction of the Indian Summer Monsoon (ISM) and Western Disturbance (WD) moisture fluxes. However, the geomorphic consequences of such anomalous monsoon periods, as well as their influence on long-term landscape change, are still unclear.
摘要构造、地表过程和极端气候的相互作用影响着地貌对极端水文事件的响应。2022 年,印度河上游下游在季风季节发生了一次异常降水事件,造成了短时间的大洪水和下游社会经济混乱。为了了解这次洪水事件的地貌反应和气候控制之间的空间关系及其主要触发因素,我们利用地形指标进行了景观分析,并量化了水文气候变量之间的因果关系。根据我们的观察,上游冰川子流域的温度异常对积雪覆盖分布有相当大的影响。随着积雪覆盖率的变化,冰川融化的径流量也随之增加,从而使流经高阶河段的河水流量增加。上印度河高阶河段的降水量异常高,再加上大量的冰川融水径流,导致高河谷陡坡河道发生特大洪水。洪水影响区域的平均流域 ksn 和 SL 指数较高,包括沿河道剖面向下游的许多峰值。为了确定印度河上游下游对此次洪水事件的反应,我们采用了增强植被指数(EVI)和归一化差异水指数(NDWI)作为变化指标。我们观察到 NDWI 对 EVI 的反向因果影响,以及异常溪流功率与相对 EVI 之间在统计学上的显著关系,这表明在这次偶发事件中,下游河道形态发生了快速变化,突出表明 EVI 是地貌变化的有用指标。我们认为,这次特大洪水事件是高地形上异常冰川融化和异常降水相互作用的结果,与事件持续期间的异常气温有一定的因果关系。同步观测结果表明,这种气象条件涉及印度夏季季风(ISM)和西部扰动(WD)水汽通量的相互作用。然而,这种异常季风期的地貌后果及其对长期地貌变化的影响仍不清楚。
{"title":"Geomorphic imprint of high mountain floods: Insight from the 2022 hydrological extreme across the Upper Indus terrain in NW Himalayas","authors":"Abhishek Kashyap, Kristen Cook, Mukunda Dev Behera","doi":"10.5194/egusphere-2024-1618","DOIUrl":"https://doi.org/10.5194/egusphere-2024-1618","url":null,"abstract":"<strong>Abstract.</strong> The interaction of tectonics, surface processes, and climate extremes impacts how the landscape responds to extreme hydrological events. An anomalous precipitation event in 2022 occurred during the monsoon season along the lower reaches of the Upper Indus River, resulting in short-lived high-magnitude flooding and socioeconomic disruption downstream. To understand the spatial relationship between the geomorphic response and climatic controls of this flood event, as well as their primary triggers, we performed a landscape analysis using topographic metrics and quantified the causal association between hydro-climatic variables. Temperature anomalies in upstream glaciated sub-catchments had a considerable impact on snow cover distribution, based on our observations. As snow cover changed, glacial melt runoff rose, contributing to increased fluvial stream power after traversing higher-order reaches. The higher-order reaches of the Upper Indus River received an anomalously high amount of precipitation, which, when combined with substantial glacial and melt discharge, contributed to an extreme flood across the high-relief steep gradient channels. The flood-affected regions had a high mean basin ksn and SL-index, including numerous spikes in their magnitudes along their channel profiles downstream. To determine how the lower reaches of the Upper Indus River responded to this flood event, we employed the Enhanced Vegetation Index (EVI) and Normalized Difference Water Index (NDWI) as change indicator metrics. We observed an inverse causal influence of NDWI on EVI and a statistically significant relationship between anomalous stream power and relative EVI, suggesting that downstream channel morphology changed rapidly during this episodic event and highlighting EVI as a useful indicator of geomorphic change. We suggest that this extreme flood event is a result of the interaction of anomalous glacial melt and anomalous precipitation over a high-relief landscape, with a certain causal connection with anomalous temperature over the event duration. The synoptic observations suggest that this meteorological condition involves the interaction of the Indian Summer Monsoon (ISM) and Western Disturbance (WD) moisture fluxes. However, the geomorphic consequences of such anomalous monsoon periods, as well as their influence on long-term landscape change, are still unclear.","PeriodicalId":48749,"journal":{"name":"Earth Surface Dynamics","volume":"40 1","pages":""},"PeriodicalIF":3.4,"publicationDate":"2024-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141509645","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-14DOI: 10.5194/egusphere-2024-683
Fritz Schlunegger, Edi Kissling, Dimitri Tibo Bandou, Guilhem Amin Douillet, David Mair, Urs Marti, Regina Reber, Patrick Fabian Schläfli, Michael Alfred Schwenk
Abstract. This work summarizes the results of an interdisciplinary project where we aimed to explore the origin of overdeepenings or tunnel valleys through a combination of a gravimetry survey, drillings, dating and a synthesis of previously published work. To this end, we focused on the Bern area, Switzerland, situated on the northern margin of the European Alps. In this region, multiple advances of piedmont glaciers during the Quaternary glaciations resulted in the carving of the main overdeepening of the Aare River valley (referred to as Aare main overdeepening). This bedrock depression is tens of km long and up to several hundreds of meters to a few kilometers wide. We found that in the Bern area, this main overdeepening is made up of two >200 m-deep troughs that are separated by a c. 5 km-long and up to 150 m-high transverse rocky ridge, interpreted as a riegel. The basins and the riegel are overlain by a >200 m- and 100 m-thick succession of Quaternary sediments, respectively. The bedrock itself is made up of a Late Oligocene to Early Miocene suite of consolidated clastic deposits, which are part of the Molasse foreland basin, whereas the Quaternary suite comprises a middle Pleistocene to Holocene succession of glacio-lacustrine gravel, sand and mud. A synthesis of published gravimetry data revealed that the upstream stoss side of the bedrock riegel is c. 50 % flatter than the downstream lee side. In addition, information from >100 deep drillings reaching depths >50 m suggests that the bedrock riegel is dissected by an anastomosing network of slot canyons. We propose that these canyons established the hydrological connection between the upstream and downstream basins during their formation. Based on published modelling results, we interpret that the riegels and canyons were formed through incision of subglacial meltwater during a glacier’s decay state, when large volumes of meltwater were released. Such a situation has repeatedly occurred since the Middle Pleistocene Transition approximately 800 ka ago, when large and erosive piedmont glaciers began to advance far into the foreland. This resulted in the deep carving of the inner-Alpine valleys, and additionally in the formation of overdeepenings on the plateau on the northern margin of the Alps.
{"title":"Overdeepening or tunnel valley of the Aare glacier on the northern margin of the European Alps: Basins, riegels, and slot canyons","authors":"Fritz Schlunegger, Edi Kissling, Dimitri Tibo Bandou, Guilhem Amin Douillet, David Mair, Urs Marti, Regina Reber, Patrick Fabian Schläfli, Michael Alfred Schwenk","doi":"10.5194/egusphere-2024-683","DOIUrl":"https://doi.org/10.5194/egusphere-2024-683","url":null,"abstract":"<strong>Abstract.</strong> This work summarizes the results of an interdisciplinary project where we aimed to explore the origin of overdeepenings or tunnel valleys through a combination of a gravimetry survey, drillings, dating and a synthesis of previously published work. To this end, we focused on the Bern area, Switzerland, situated on the northern margin of the European Alps. In this region, multiple advances of piedmont glaciers during the Quaternary glaciations resulted in the carving of the main overdeepening of the Aare River valley (referred to as Aare main overdeepening). This bedrock depression is tens of km long and up to several hundreds of meters to a few kilometers wide. We found that in the Bern area, this main overdeepening is made up of two >200 m-deep troughs that are separated by a c. 5 km-long and up to 150 m-high transverse rocky ridge, interpreted as a riegel. The basins and the riegel are overlain by a >200 m- and 100 m-thick succession of Quaternary sediments, respectively. The bedrock itself is made up of a Late Oligocene to Early Miocene suite of consolidated clastic deposits, which are part of the Molasse foreland basin, whereas the Quaternary suite comprises a middle Pleistocene to Holocene succession of glacio-lacustrine gravel, sand and mud. A synthesis of published gravimetry data revealed that the upstream stoss side of the bedrock riegel is c. 50 % flatter than the downstream lee side. In addition, information from >100 deep drillings reaching depths >50 m suggests that the bedrock riegel is dissected by an anastomosing network of slot canyons. We propose that these canyons established the hydrological connection between the upstream and downstream basins during their formation. Based on published modelling results, we interpret that the riegels and canyons were formed through incision of subglacial meltwater during a glacier’s decay state, when large volumes of meltwater were released. Such a situation has repeatedly occurred since the Middle Pleistocene Transition approximately 800 ka ago, when large and erosive piedmont glaciers began to advance far into the foreland. This resulted in the deep carving of the inner-Alpine valleys, and additionally in the formation of overdeepenings on the plateau on the northern margin of the Alps.","PeriodicalId":48749,"journal":{"name":"Earth Surface Dynamics","volume":"48 1","pages":""},"PeriodicalIF":3.4,"publicationDate":"2024-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141062722","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-13DOI: 10.5194/esurf-12-727-2024
Eric Petersen, Regine Hock, Michael G. Loso
Abstract. Ice cliffs are melt hot spots that contribute disproportionately to melt on debris-covered glaciers. In this study, we investigate the impact of supraglacial stream hydrology on ice cliffs using in situ and remote sensing observations, streamflow measurements, and a conceptual geomorphic model of ice cliff backwasting applied to ice cliffs on Kennicott Glacier, Alaska. We found that 33 % of ice cliffs (accounting for 69 % of the ice cliff area) are actively influenced by streams, while half are nearer than 10 m from the nearest stream. Supraglacial streams contribute to ice cliff formation and maintenance by horizontal meandering, vertical incision, and debris transport. These processes produce an undercut lip at the ice cliff base and transport clasts up to tens of centimeters in diameter, preventing reburial of ice cliffs by debris. Stream meander morphology reminiscent of sedimentary river channel meanders and oxbow lakes produces sinuous and crescent ice cliff shapes. Stream avulsions result in rapid ice cliff collapse and local channel abandonment. Ice cliffs abandoned by streams are observed to be reburied by supraglacial debris, indicating a strong role played by streams in ice cliff persistence. We also report on a localized surge-like event at the glacier's western margin which drove the formation of ice cliffs from crevassing; these cliffs occur in sets with parallel linear morphologies contrasting with the crescent planform shape of stream-driven cliffs. The development of landscape evolution models may assist in quantifying the total net effect of these processes on steady-state ice cliff coverage and mass balance, contextualizing them with other drivers including supraglacial ponds, differential melt, ice dynamics, and collapse of englacial voids.
{"title":"Stream hydrology controls on ice cliff evolution and survival on debris-covered glaciers","authors":"Eric Petersen, Regine Hock, Michael G. Loso","doi":"10.5194/esurf-12-727-2024","DOIUrl":"https://doi.org/10.5194/esurf-12-727-2024","url":null,"abstract":"Abstract. Ice cliffs are melt hot spots that contribute disproportionately to melt on debris-covered glaciers. In this study, we investigate the impact of supraglacial stream hydrology on ice cliffs using in situ and remote sensing observations, streamflow measurements, and a conceptual geomorphic model of ice cliff backwasting applied to ice cliffs on Kennicott Glacier, Alaska. We found that 33 % of ice cliffs (accounting for 69 % of the ice cliff area) are actively influenced by streams, while half are nearer than 10 m from the nearest stream. Supraglacial streams contribute to ice cliff formation and maintenance by horizontal meandering, vertical incision, and debris transport. These processes produce an undercut lip at the ice cliff base and transport clasts up to tens of centimeters in diameter, preventing reburial of ice cliffs by debris. Stream meander morphology reminiscent of sedimentary river channel meanders and oxbow lakes produces sinuous and crescent ice cliff shapes. Stream avulsions result in rapid ice cliff collapse and local channel abandonment. Ice cliffs abandoned by streams are observed to be reburied by supraglacial debris, indicating a strong role played by streams in ice cliff persistence. We also report on a localized surge-like event at the glacier's western margin which drove the formation of ice cliffs from crevassing; these cliffs occur in sets with parallel linear morphologies contrasting with the crescent planform shape of stream-driven cliffs. The development of landscape evolution models may assist in quantifying the total net effect of these processes on steady-state ice cliff coverage and mass balance, contextualizing them with other drivers including supraglacial ponds, differential melt, ice dynamics, and collapse of englacial voids.","PeriodicalId":48749,"journal":{"name":"Earth Surface Dynamics","volume":"46 1","pages":""},"PeriodicalIF":3.4,"publicationDate":"2024-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140939763","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-08DOI: 10.5194/esurf-12-709-2024
Daniel O'Hara, Liran Goren, Roos M. J. van Wees, Benjamin Campforts, Pablo Grosse, Pierre Lahitte, Gabor Kereszturi, Matthieu Kervyn
Abstract. The erosional state of a landscape is often assessed through a series of metrics that quantify the morphology of drainage basins and divides. Such metrics have been well explored in tectonically active environments to evaluate the role of different processes in sculpting topography, yet relatively few works have applied these analyses to radial landforms such as volcanoes. We quantify drainage basin geometries on volcanic edifices of varying ages using common metrics (e.g., Hack's law, drainage density, and number of basins that reach the edifice summit, as well as basin hypsometry integral, length, width, relief, and average topographic slope). Relating these measurements to the log-mean age of activity for each edifice, we find that drainage density, basin hypsometry, basin length, and basin width quantify the degree of erosional maturity for these landforms. We also explore edifice drainage basin growth and competition by conducting a divide mobility analysis on the volcanoes, finding that young volcanoes are characterized by nearly uniform fluvial basins within unstable configurations that are more prone to divide migration. As basins on young volcanoes erode, they become less uniform but adapt to a more stable configuration with less divide migration. Finally, we analyze basin spatial geometries and outlet spacing on edifices, discovering an evolution in radial basin configurations that differ from typical linear mountain ranges. From these, we present a novel conceptual model for edifice degradation that allows new interpretations of composite volcano histories and provides predictive quantities for edifice morphologic evolution.
{"title":"Time-varying drainage basin development and erosion on volcanic edifices","authors":"Daniel O'Hara, Liran Goren, Roos M. J. van Wees, Benjamin Campforts, Pablo Grosse, Pierre Lahitte, Gabor Kereszturi, Matthieu Kervyn","doi":"10.5194/esurf-12-709-2024","DOIUrl":"https://doi.org/10.5194/esurf-12-709-2024","url":null,"abstract":"Abstract. The erosional state of a landscape is often assessed through a series of metrics that quantify the morphology of drainage basins and divides. Such metrics have been well explored in tectonically active environments to evaluate the role of different processes in sculpting topography, yet relatively few works have applied these analyses to radial landforms such as volcanoes. We quantify drainage basin geometries on volcanic edifices of varying ages using common metrics (e.g., Hack's law, drainage density, and number of basins that reach the edifice summit, as well as basin hypsometry integral, length, width, relief, and average topographic slope). Relating these measurements to the log-mean age of activity for each edifice, we find that drainage density, basin hypsometry, basin length, and basin width quantify the degree of erosional maturity for these landforms. We also explore edifice drainage basin growth and competition by conducting a divide mobility analysis on the volcanoes, finding that young volcanoes are characterized by nearly uniform fluvial basins within unstable configurations that are more prone to divide migration. As basins on young volcanoes erode, they become less uniform but adapt to a more stable configuration with less divide migration. Finally, we analyze basin spatial geometries and outlet spacing on edifices, discovering an evolution in radial basin configurations that differ from typical linear mountain ranges. From these, we present a novel conceptual model for edifice degradation that allows new interpretations of composite volcano histories and provides predictive quantities for edifice morphologic evolution.","PeriodicalId":48749,"journal":{"name":"Earth Surface Dynamics","volume":"46 1","pages":""},"PeriodicalIF":3.4,"publicationDate":"2024-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140939677","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-08DOI: 10.5194/esurf-12-691-2024
Brayden Noh, Omar Wani, Kieran B. J. Dunne, Michael P. Lamb
Abstract. Lateral migration of meandering rivers poses erosional risks to human settlements, roads, and infrastructure in alluvial floodplains. While there is a large body of scientific literature on the dominant mechanisms driving river migration, it is still not possible to accurately predict river meander evolution over multiple years. This is in part because we do not fully understand the relative contribution of each mechanism and because deterministic mathematical models are not equipped to account for stochasticity in the system. Besides, uncertainty due to model structure deficits and unknown parameter values remains. For a more reliable assessment of risks, we therefore need probabilistic forecasts. Here, we present a workflow to generate geomorphic risk maps for river migration using probabilistic modeling. We start with a simple geometric model for river migration, where nominal migration rates increase with local and upstream curvature. We then account for model structure deficits using smooth random functions. Probabilistic forecasts for river channel position over time are generated by Monte Carlo runs using a distribution of model parameter values inferred from satellite data. We provide a recipe for parameter inference within the Bayesian framework. We demonstrate that such risk maps are relatively more informative in avoiding false negatives, which can be both detrimental and costly, in the context of assessing erosional hazards due to river migration. Our results show that with longer prediction time horizons, the spatial uncertainty of erosional hazard within the entire channel belt increases – with more geographical area falling within 25 % < probability < 75 %. However, forecasts also become more confident about erosion for regions immediately in the vicinity of the river, especially on its cut-bank side. Probabilistic modeling thus allows us to quantify our degree of confidence – which is spatially and temporally variable – in river migration forecasts. We also note that to increase the reliability of these risk maps, we need to describe the first-order dynamics in our model to a reasonable degree of accuracy, and simple geometric models do not always possess such accuracy.
{"title":"Geomorphic risk maps for river migration using probabilistic modeling – a framework","authors":"Brayden Noh, Omar Wani, Kieran B. J. Dunne, Michael P. Lamb","doi":"10.5194/esurf-12-691-2024","DOIUrl":"https://doi.org/10.5194/esurf-12-691-2024","url":null,"abstract":"Abstract. Lateral migration of meandering rivers poses erosional risks to human settlements, roads, and infrastructure in alluvial floodplains. While there is a large body of scientific literature on the dominant mechanisms driving river migration, it is still not possible to accurately predict river meander evolution over multiple years. This is in part because we do not fully understand the relative contribution of each mechanism and because deterministic mathematical models are not equipped to account for stochasticity in the system. Besides, uncertainty due to model structure deficits and unknown parameter values remains. For a more reliable assessment of risks, we therefore need probabilistic forecasts. Here, we present a workflow to generate geomorphic risk maps for river migration using probabilistic modeling. We start with a simple geometric model for river migration, where nominal migration rates increase with local and upstream curvature. We then account for model structure deficits using smooth random functions. Probabilistic forecasts for river channel position over time are generated by Monte Carlo runs using a distribution of model parameter values inferred from satellite data. We provide a recipe for parameter inference within the Bayesian framework. We demonstrate that such risk maps are relatively more informative in avoiding false negatives, which can be both detrimental and costly, in the context of assessing erosional hazards due to river migration. Our results show that with longer prediction time horizons, the spatial uncertainty of erosional hazard within the entire channel belt increases – with more geographical area falling within 25 % < probability < 75 %. However, forecasts also become more confident about erosion for regions immediately in the vicinity of the river, especially on its cut-bank side. Probabilistic modeling thus allows us to quantify our degree of confidence – which is spatially and temporally variable – in river migration forecasts. We also note that to increase the reliability of these risk maps, we need to describe the first-order dynamics in our model to a reasonable degree of accuracy, and simple geometric models do not always possess such accuracy.","PeriodicalId":48749,"journal":{"name":"Earth Surface Dynamics","volume":"119 1","pages":""},"PeriodicalIF":3.4,"publicationDate":"2024-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140939869","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-07DOI: 10.5194/esurf-12-679-2024
Oswald Malcles, Philippe Vernant, David Fink, Gaël Cazes, Jean-François Ritz, Toshiyuki Fujioka, Jean Chéry
Abstract. We present 35 new burial ages (27 sites) based on 26Al / 10Be ratios of terrestrial cosmogenic radionuclides measured in clasts and sediments deep within 12 caves in the southern Massif Central, France. Our results, together with previously published burial ages, verify that cave morphogenesis has been continuously active in this region for at least the past ∼ 6 Myr. Combining sample burial ages with their associated cave elevation above the modern stream bed gives a mean regional incision rate of 88 ± 5 m Ma−1 for the Grands Causses area. South of the Cevennes Fault Zone bordering the Grands Causses, the incision rate is 43 ± 5 m Ma−1, suggesting that this difference might be accommodated by the fault zone. Sediment burial ages from caves which are not located on river valley flanks or cliff walls are surprisingly too young compared to their expected ages when calculated using this regional average river incision rate. This suggests that the classical epigenic speleogenesis model that presumes a direct correlation between cave level development and regional base level lowering does not apply for the study area. Therefore, we propose that regional speleogenesis is mainly controlled by the removal of ghost rocks by headward erosion from river canyons to central parts of the plateaus, emptying incipient primokarst passages to create cave systems. Our results suggest a continuum process from hypogene primokarst composed of passages filled with ghost rock to one of epigene karst dynamics emptying these passages and creating cave networks. We propose that these processes are the major mechanism in the southern Massif Central that initiates speleogenesis and controls the geometry of the networks. In this region, tiered karst cannot be associated with the pace of incision of the major rivers but must be explained by former ghost rock (or hypogene) processes.
摘要。我们根据在法国南部中央丘陵(Massif Central)12个洞穴深处的碎屑和沉积物中测量到的地面宇宙放射性核素26Al/10Be比值,提出了35个新的埋藏年代(27个地点)。我们的研究结果与之前公布的埋藏年代一起,验证了至少在过去的 6 Myr 年里,洞穴形态的形成在这一地区持续活跃。将样本的埋藏年代与其在现代河床之上的相关洞穴海拔高度结合起来,可以得出大高斯地区的平均区域侵蚀速率为 88 ± 5 m Ma-1。在与大高斯地区接壤的塞文山脉断裂带南侧,侵蚀率为 43 ± 5 m Ma-1,这表明断层带可能会造成这种差异。根据该地区的平均河流侵蚀率计算,非河谷侧壁或崖壁上的洞穴的沉积物埋藏年龄与其预期年龄相比过于年轻,令人惊讶。这表明,假定洞穴发育与区域基底降低直接相关的经典外生成岩模式并不适用于研究区域。因此,我们提出,区域溶洞的形成主要受控于河流峡谷向高原中部地区的顶侵蚀作用对鬼斧神工岩石的清除,从而掏空了初生的原始岩溶通道,形成了溶洞系统。我们的研究结果表明,从由充满鬼岩的通道组成的下元古界岩溶,到掏空这些通道并形成洞穴网络的上元古界岩溶动力学,是一个连续的过程。我们认为,这些过程是中丘陵南部岩溶形成的主要机制,它们启动了岩洞的形成,并控制着岩洞网络的几何形状。在这一地区,层状岩溶不能与主要河流的侵蚀速度联系起来,而必须用以前的鬼岩(或次生岩)过程来解释。
{"title":"Cosmogenic nuclide-derived downcutting rates of canyons within large limestone plateaus of southern Massif Central (France) reveal a different regional speleogenesis of karst networks","authors":"Oswald Malcles, Philippe Vernant, David Fink, Gaël Cazes, Jean-François Ritz, Toshiyuki Fujioka, Jean Chéry","doi":"10.5194/esurf-12-679-2024","DOIUrl":"https://doi.org/10.5194/esurf-12-679-2024","url":null,"abstract":"Abstract. We present 35 new burial ages (27 sites) based on 26Al / 10Be ratios of terrestrial cosmogenic radionuclides measured in clasts and sediments deep within 12 caves in the southern Massif Central, France. Our results, together with previously published burial ages, verify that cave morphogenesis has been continuously active in this region for at least the past ∼ 6 Myr. Combining sample burial ages with their associated cave elevation above the modern stream bed gives a mean regional incision rate of 88 ± 5 m Ma−1 for the Grands Causses area. South of the Cevennes Fault Zone bordering the Grands Causses, the incision rate is 43 ± 5 m Ma−1, suggesting that this difference might be accommodated by the fault zone. Sediment burial ages from caves which are not located on river valley flanks or cliff walls are surprisingly too young compared to their expected ages when calculated using this regional average river incision rate. This suggests that the classical epigenic speleogenesis model that presumes a direct correlation between cave level development and regional base level lowering does not apply for the study area. Therefore, we propose that regional speleogenesis is mainly controlled by the removal of ghost rocks by headward erosion from river canyons to central parts of the plateaus, emptying incipient primokarst passages to create cave systems. Our results suggest a continuum process from hypogene primokarst composed of passages filled with ghost rock to one of epigene karst dynamics emptying these passages and creating cave networks. We propose that these processes are the major mechanism in the southern Massif Central that initiates speleogenesis and controls the geometry of the networks. In this region, tiered karst cannot be associated with the pace of incision of the major rivers but must be explained by former ghost rock (or hypogene) processes.","PeriodicalId":48749,"journal":{"name":"Earth Surface Dynamics","volume":"113 1","pages":""},"PeriodicalIF":3.4,"publicationDate":"2024-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140884248","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}