Degrees of maps and multiscale geometry

IF 2.8 1区 数学 Q1 MATHEMATICS Forum of Mathematics Pi Pub Date : 2024-01-18 DOI:10.1017/fmp.2023.33
Aleksandr Berdnikov, Larry Guth, Fedor Manin
{"title":"Degrees of maps and multiscale geometry","authors":"Aleksandr Berdnikov, Larry Guth, Fedor Manin","doi":"10.1017/fmp.2023.33","DOIUrl":null,"url":null,"abstract":"We study the degree of an <jats:italic>L</jats:italic>-Lipschitz map between Riemannian manifolds, proving new upper bounds and constructing new examples. For instance, if <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050508623000331_inline1.png\" /> <jats:tex-math> $X_k$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> is the connected sum of <jats:italic>k</jats:italic> copies of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050508623000331_inline2.png\" /> <jats:tex-math> $\\mathbb CP^2$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> for <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050508623000331_inline3.png\" /> <jats:tex-math> $k \\ge 4$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, then we prove that the maximum degree of an <jats:italic>L</jats:italic>-Lipschitz self-map of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050508623000331_inline4.png\" /> <jats:tex-math> $X_k$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> is between <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050508623000331_inline5.png\" /> <jats:tex-math> $C_1 L^4 (\\log L)^{-4}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> and <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050508623000331_inline6.png\" /> <jats:tex-math> $C_2 L^4 (\\log L)^{-1/2}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>. More generally, we divide simply connected manifolds into three topological types with three different behaviors. Each type is defined by purely topological criteria. For scalable simply connected <jats:italic>n</jats:italic>-manifolds, the maximal degree is <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050508623000331_inline7.png\" /> <jats:tex-math> $\\sim L^n$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>. For formal but nonscalable simply connected <jats:italic>n</jats:italic>-manifolds, the maximal degree grows roughly like <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050508623000331_inline8.png\" /> <jats:tex-math> $L^n (\\log L)^{-\\theta (1)}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>. And for nonformal simply connected <jats:italic>n</jats:italic>-manifolds, the maximal degree is bounded by <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050508623000331_inline9.png\" /> <jats:tex-math> $L^\\alpha $ </jats:tex-math> </jats:alternatives> </jats:inline-formula> for some <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050508623000331_inline10.png\" /> <jats:tex-math> $\\alpha &lt; n$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>.","PeriodicalId":56024,"journal":{"name":"Forum of Mathematics Pi","volume":null,"pages":null},"PeriodicalIF":2.8000,"publicationDate":"2024-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Forum of Mathematics Pi","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/fmp.2023.33","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We study the degree of an L-Lipschitz map between Riemannian manifolds, proving new upper bounds and constructing new examples. For instance, if $X_k$ is the connected sum of k copies of $\mathbb CP^2$ for $k \ge 4$ , then we prove that the maximum degree of an L-Lipschitz self-map of $X_k$ is between $C_1 L^4 (\log L)^{-4}$ and $C_2 L^4 (\log L)^{-1/2}$ . More generally, we divide simply connected manifolds into three topological types with three different behaviors. Each type is defined by purely topological criteria. For scalable simply connected n-manifolds, the maximal degree is $\sim L^n$ . For formal but nonscalable simply connected n-manifolds, the maximal degree grows roughly like $L^n (\log L)^{-\theta (1)}$ . And for nonformal simply connected n-manifolds, the maximal degree is bounded by $L^\alpha $ for some $\alpha < n$ .
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
映射度和多尺度几何
我们研究了黎曼流形之间的 L-Lipschitz 映射的度数,证明了新的上界并构建了新的例子。例如,如果 $X_k$ 是 $k \ge 4$ 的 k 份 $\mathbb CP^2$ 的连通和,那么我们证明 $X_k$ 的 L-Lipschitz 自映射的最大度介于 $C_1 L^4 (\log L)^{-4}$ 和 $C_2 L^4 (\log L)^{-1/2}$ 之间。更一般地说,我们把简单连接流形分为三种拓扑类型,具有三种不同的行为。每种类型都由纯拓扑标准定义。对于可伸缩的简单连接 n 流形,最大度数是 $\sim L^n$ 。对于形式但不可扩展的简单连接 n 形,最大度数的增长大致为 $L^n (\log L)^{-\theta (1)}$ 。而对于非形式简单相连的 n-manifolds,对于某个 $\alpha < n$,最大度数以 $L^\alpha $ 为界。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Forum of Mathematics Pi
Forum of Mathematics Pi Mathematics-Statistics and Probability
CiteScore
3.50
自引率
0.00%
发文量
21
审稿时长
19 weeks
期刊介绍: Forum of Mathematics, Pi is the open access alternative to the leading generalist mathematics journals and are of real interest to a broad cross-section of all mathematicians. Papers published are of the highest quality. Forum of Mathematics, Pi and Forum of Mathematics, Sigma are an exciting new development in journal publishing. Together they offer fully open access publication combined with peer-review standards set by an international editorial board of the highest calibre, and all backed by Cambridge University Press and our commitment to quality. Strong research papers from all parts of pure mathematics and related areas are welcomed. All published papers are free online to readers in perpetuity.
期刊最新文献
Local parameters of supercuspidal representations Strichartz estimates and global well-posedness of the cubic NLS on The definable content of homological invariants II: Čech cohomology and homotopy classification Theta functions, fourth moments of eigenforms and the sup-norm problem II ON HOMOMORPHISM GRAPHS
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1