{"title":"The definable content of homological invariants II: Čech cohomology and homotopy classification","authors":"Jeffrey Bergfalk, Martino Lupini, Aristotelis Panagiotopoulos","doi":"10.1017/fmp.2024.7","DOIUrl":null,"url":null,"abstract":"This is the second installment in a series of papers applying descriptive set theoretic techniques to both analyze and enrich classical functors from homological algebra and algebraic topology. In it, we show that the Čech cohomology functors <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050508624000076_inline1.png\"/> on the category of locally compact separable metric spaces each factor into (i) what we term their <jats:italic>definable version</jats:italic>, a functor <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050508624000076_inline2.png\"/> taking values in the category <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050508624000076_inline3.png\"/> <jats:tex-math> $\\mathsf {GPC}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> of <jats:italic>groups with a Polish cover</jats:italic> (a category first introduced in this work’s predecessor), followed by (ii) a forgetful functor from <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050508624000076_inline4.png\"/> <jats:tex-math> $\\mathsf {GPC}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> to the category of groups. These definable cohomology functors powerfully refine their classical counterparts: we show that they are complete invariants, for example, of the homotopy types of mapping telescopes of <jats:italic>d</jats:italic>-spheres or <jats:italic>d</jats:italic>-tori for any <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050508624000076_inline5.png\"/> <jats:tex-math> $d\\geq 1$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, and, in contrast, that there exist uncountable families of pairwise homotopy inequivalent mapping telescopes of either sort on which the classical cohomology functors are constant. We then apply the functors <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050508624000076_inline6.png\"/> to show that a seminal problem in the development of algebraic topology – namely, Borsuk and Eilenberg’s 1936 problem of classifying, up to homotopy, the maps from a solenoid complement <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050508624000076_inline7.png\"/> <jats:tex-math> $S^3\\backslash \\Sigma $ </jats:tex-math> </jats:alternatives> </jats:inline-formula> to the <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050508624000076_inline8.png\"/> <jats:tex-math> $2$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>-sphere – is essentially hyperfinite but not smooth. Fundamental to our analysis is the fact that the Čech cohomology functors <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050508624000076_inline9.png\"/> admit two main formulations: a more combinatorial one and a more homotopical formulation as the group <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050508624000076_inline10.png\"/> <jats:tex-math> $[X,P]$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> of homotopy classes of maps from <jats:italic>X</jats:italic> to a polyhedral <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050508624000076_inline11.png\"/> <jats:tex-math> $K(G,n)$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> space <jats:italic>P</jats:italic>. We describe the Borel-definable content of each of these formulations and prove a definable version of Huber’s theorem reconciling the two. In the course of this work, we record definable versions of Urysohn’s Lemma and the simplicial approximation and homotopy extension theorems, along with a definable Milnor-type short exact sequence decomposition of the space <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050508624000076_inline12.png\"/> <jats:tex-math> $\\mathrm {Map}(X,P)$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> in terms of its subset of <jats:italic>phantom maps</jats:italic>; relatedly, we provide a topological characterization of this set for any locally compact Polish space <jats:italic>X</jats:italic> and polyhedron <jats:italic>P</jats:italic>. In aggregate, this work may be more broadly construed as laying foundations for the descriptive set theoretic study of the homotopy relation on such spaces <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050508624000076_inline13.png\"/> <jats:tex-math> $\\mathrm {Map}(X,P)$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, a relation which, together with the more combinatorial incarnation of <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050508624000076_inline14.png\"/>, embodies a substantial variety of classification problems arising throughout mathematics. We show, in particular, that if <jats:italic>P</jats:italic> is a polyhedral <jats:italic>H</jats:italic>-group, then this relation is both Borel and idealistic. In consequence, <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050508624000076_inline15.png\"/> <jats:tex-math> $[X,P]$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> falls in the category of <jats:italic>definable groups</jats:italic>, an extension of the category <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050508624000076_inline16.png\"/> <jats:tex-math> $\\mathsf {GPC}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> introduced herein for its regularity properties, which facilitate several of the aforementioned computations.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/fmp.2024.7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
This is the second installment in a series of papers applying descriptive set theoretic techniques to both analyze and enrich classical functors from homological algebra and algebraic topology. In it, we show that the Čech cohomology functors on the category of locally compact separable metric spaces each factor into (i) what we term their definable version, a functor taking values in the category $\mathsf {GPC}$ of groups with a Polish cover (a category first introduced in this work’s predecessor), followed by (ii) a forgetful functor from $\mathsf {GPC}$ to the category of groups. These definable cohomology functors powerfully refine their classical counterparts: we show that they are complete invariants, for example, of the homotopy types of mapping telescopes of d-spheres or d-tori for any $d\geq 1$ , and, in contrast, that there exist uncountable families of pairwise homotopy inequivalent mapping telescopes of either sort on which the classical cohomology functors are constant. We then apply the functors to show that a seminal problem in the development of algebraic topology – namely, Borsuk and Eilenberg’s 1936 problem of classifying, up to homotopy, the maps from a solenoid complement $S^3\backslash \Sigma $ to the $2$ -sphere – is essentially hyperfinite but not smooth. Fundamental to our analysis is the fact that the Čech cohomology functors admit two main formulations: a more combinatorial one and a more homotopical formulation as the group $[X,P]$ of homotopy classes of maps from X to a polyhedral $K(G,n)$ space P. We describe the Borel-definable content of each of these formulations and prove a definable version of Huber’s theorem reconciling the two. In the course of this work, we record definable versions of Urysohn’s Lemma and the simplicial approximation and homotopy extension theorems, along with a definable Milnor-type short exact sequence decomposition of the space $\mathrm {Map}(X,P)$ in terms of its subset of phantom maps; relatedly, we provide a topological characterization of this set for any locally compact Polish space X and polyhedron P. In aggregate, this work may be more broadly construed as laying foundations for the descriptive set theoretic study of the homotopy relation on such spaces $\mathrm {Map}(X,P)$ , a relation which, together with the more combinatorial incarnation of , embodies a substantial variety of classification problems arising throughout mathematics. We show, in particular, that if P is a polyhedral H-group, then this relation is both Borel and idealistic. In consequence, $[X,P]$ falls in the category of definable groups, an extension of the category $\mathsf {GPC}$ introduced herein for its regularity properties, which facilitate several of the aforementioned computations.