V. V. Kurbatkina, E. I. Patsera, T. A. Sviridova, N. A. Kochetov, E. A. Levashov
{"title":"Combustion Synthesis and Characterization of Ultra-High-Temperature NbB2–HfB2 Solid Solutions","authors":"V. V. Kurbatkina, E. I. Patsera, T. A. Sviridova, N. A. Kochetov, E. A. Levashov","doi":"10.3103/S1061386223040143","DOIUrl":null,"url":null,"abstract":"<p>This paper presents an in-depth study on the combustion synthesis, solid-solution formation, processing, and characterization of NbB<sub>2</sub>–HfB<sub>2</sub> ceramics, aiming to explore their potential applications, particularly in industries requiring high-performance materials. We conducted macrokinetic measurements and fitted regression models to predict combustion temperature and velocity for compositions ranging from 50 to 100% HfB<sub>2</sub>. A combined method of ball milling and hot pressing was developed for processing the combustion products into dense ceramics. These methods resulted in samples with relative densities reaching 97%, hardness of up to 34 GPa, and Young’s modulus of up to 530 GPa, with NbB<sub>2</sub>–50% HfB<sub>2</sub> solid solution exhibiting the best mechanical properties. The study revealed a linear increase in thermal properties and density with the rise in HfB<sub>2</sub> content. The thermal conductivity of the solid solutions in the Nb–Hf–B system ranged from 34 to 40 W/mK and was found to increase with temperature, making these ceramics suitable for ultra-high-temperature applications. The findings have significant implications for aerospace and high-performance engineering sectors and provide a solid foundation for further investigation of Nb–Hf–B ceramics under real-world operational conditions.</p>","PeriodicalId":595,"journal":{"name":"International Journal of Self-Propagating High-Temperature Synthesis","volume":"32 4","pages":"313 - 325"},"PeriodicalIF":0.5000,"publicationDate":"2024-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Self-Propagating High-Temperature Synthesis","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.3103/S1061386223040143","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
This paper presents an in-depth study on the combustion synthesis, solid-solution formation, processing, and characterization of NbB2–HfB2 ceramics, aiming to explore their potential applications, particularly in industries requiring high-performance materials. We conducted macrokinetic measurements and fitted regression models to predict combustion temperature and velocity for compositions ranging from 50 to 100% HfB2. A combined method of ball milling and hot pressing was developed for processing the combustion products into dense ceramics. These methods resulted in samples with relative densities reaching 97%, hardness of up to 34 GPa, and Young’s modulus of up to 530 GPa, with NbB2–50% HfB2 solid solution exhibiting the best mechanical properties. The study revealed a linear increase in thermal properties and density with the rise in HfB2 content. The thermal conductivity of the solid solutions in the Nb–Hf–B system ranged from 34 to 40 W/mK and was found to increase with temperature, making these ceramics suitable for ultra-high-temperature applications. The findings have significant implications for aerospace and high-performance engineering sectors and provide a solid foundation for further investigation of Nb–Hf–B ceramics under real-world operational conditions.
期刊介绍:
International Journal of Self-Propagating High-Temperature Synthesis is an international journal covering a wide range of topics concerned with self-propagating high-temperature synthesis (SHS), the process for the production of advanced materials based on solid-state combustion utilizing internally generated chemical energy. Subjects range from the fundamentals of SHS processes, chemistry and technology of SHS products and advanced materials to problems concerned with related fields, such as the kinetics and thermodynamics of high-temperature chemical reactions, combustion theory, macroscopic kinetics of nonisothermic processes, etc. The journal is intended to provide a wide-ranging exchange of research results and a better understanding of developmental and innovative trends in SHS science and applications.