首页 > 最新文献

International Journal of Self-Propagating High-Temperature Synthesis最新文献

英文 中文
Spray Solution Combustion Synthesis of In-Doped ZnO: The Fuel Effect on Microstructure and Thermoelectric Properties 喷雾溶液燃烧合成掺杂氧化锌:燃料对微观结构和热电特性的影响
IF 0.5 Q4 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-09-06 DOI: 10.3103/S1061386224700171
Zh. S. Yermekova, E. V. Chernyshova, S. S. Yurlov, S. N. Yudin

ZnO is an earth abundant, safe, environmentally friendly, and relatively inexpensive resource for the application in the manufacturing of thermoelectric materials. In this work hollow spherical particles of Zn0.995In0.005O produced by the spray solution combustion synthesis (SSCS) with the stochiometric (φ1) and excessive (φ3) amount of glycine fuel were sintered at 900°C by the spark plasma sintering technique and thermoelectric properties of sintered Sφ1 and Sφ3 materials was measured. The best thermoelectric figure of merit zT ∼ 0.08 at 1050 K obtained for the materials produced at stoichiometric amount of fuel (φ1). It was shown that lower amount of fuel (φ1) used during the synthesis favors formation of porous and less textured structure which exhibits better thermoelectrical properties. The Lotgering factor (LF) calculated from the intensities of XRD (002) peaks was 0.65 for Sφ3 sample, whereas for Sφ1 sample LF (002) = 0.08. The average pore size of sintered Sφ1 and Sφ3 materials was around 200 nm. The total porosity was about 5–8% for Sφ1 and 2–3% for Sφ3 material.

摘要 氧化锌是一种资源丰富、安全、环保且价格相对低廉的热电材料。本研究采用火花等离子体烧结技术,在 900°C 温度下烧结了喷射溶液燃烧合成法(SSCS)制备的Zn0.995In0.005O空心球形颗粒,并测量了烧结的Sφ1和Sφ3材料的热电性能。在 1050 K 时,以燃料的化学计量(φ1)生产的材料获得了最佳热电特性 zT ∼ 0.08。结果表明,在合成过程中使用较低的燃料量(φ1)有利于形成多孔和纹理较少的结构,从而表现出更好的热电特性。根据 XRD (002) 峰的强度计算得出,Sφ3 样品的 LF (002) = 0.65,而 Sφ1 样品的 LF (002) = 0.08。烧结 Sφ1 和 Sφ3 材料的平均孔径约为 200 nm。Sφ1 材料的总孔隙率约为 5-8%,Sφ3 材料的总孔隙率约为 2-3%。
{"title":"Spray Solution Combustion Synthesis of In-Doped ZnO: The Fuel Effect on Microstructure and Thermoelectric Properties","authors":"Zh. S. Yermekova,&nbsp;E. V. Chernyshova,&nbsp;S. S. Yurlov,&nbsp;S. N. Yudin","doi":"10.3103/S1061386224700171","DOIUrl":"10.3103/S1061386224700171","url":null,"abstract":"<p>ZnO is an earth abundant, safe, environmentally friendly, and relatively inexpensive resource for the application in the manufacturing of thermoelectric materials. In this work hollow spherical particles of Zn<sub>0.995</sub>In<sub>0.005</sub>O produced by the spray solution combustion synthesis (SSCS) with the stochiometric (φ<sub>1</sub>) and excessive (φ<sub>3</sub>) amount of glycine fuel were sintered at 900°C by the spark plasma sintering technique and thermoelectric properties of sintered Sφ<sub>1</sub> and Sφ<sub>3</sub> materials was measured. The best thermoelectric figure of merit <i>zT</i> ∼ 0.08 at 1050 K obtained for the materials produced at stoichiometric amount of fuel (φ<sub>1</sub>). It was shown that lower amount of fuel (φ<sub>1</sub>) used during the synthesis favors formation of porous and less textured structure which exhibits better thermoelectrical properties. The Lotgering factor (LF) calculated from the intensities of XRD (002) peaks was 0.65 for Sφ<sub>3</sub> sample, whereas for Sφ<sub>1</sub> sample LF (002) = 0.08. The average pore size of sintered Sφ<sub>1</sub> and Sφ<sub>3</sub> materials was around 200 nm. The total porosity was about 5–8% for Sφ<sub>1</sub> and 2–3% for Sφ<sub>3</sub> material.</p>","PeriodicalId":595,"journal":{"name":"International Journal of Self-Propagating High-Temperature Synthesis","volume":"33 3","pages":"214 - 222"},"PeriodicalIF":0.5,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142214070","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Spatial Gasless Combustion Modes in a Sample with Discrete Structure 离散结构样本中的空间无气燃烧模式
IF 0.5 Q4 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-09-06 DOI: 10.3103/S1061386224700122
V. G. Prokof’ev

Spatial modes of combustion of the donor–acceptor system were numerically modelled. The discrete character of the combustion wave was determined by the unit cell size. The burning velocity of the sample depending on the unit cubic cell size was calculated. It was shown that as unit cell size grows, the average burning velocity of the sample increases, which is explained by a decrease in the specific area of the cell contact boundaries. Single-hot point spin modes of combustion of the parallelepiped sample with a discrete structure were found.

摘要 对供体-受体系统燃烧的空间模式进行了数值模拟。燃烧波的离散性由单元格尺寸决定。计算了取决于单位立方晶胞尺寸的样品燃烧速度。结果表明,随着单位立方晶胞尺寸的增大,样品的平均燃烧速度也随之增大,这是因为晶胞接触边界的比面积减小了。研究还发现了具有离散结构的平行六面体样品的单热点自旋燃烧模式。
{"title":"Spatial Gasless Combustion Modes in a Sample with Discrete Structure","authors":"V. G. Prokof’ev","doi":"10.3103/S1061386224700122","DOIUrl":"10.3103/S1061386224700122","url":null,"abstract":"<p>Spatial modes of combustion of the donor–acceptor system were numerically modelled. The discrete character of the combustion wave was determined by the unit cell size. The burning velocity of the sample depending on the unit cubic cell size was calculated. It was shown that as unit cell size grows, the average burning velocity of the sample increases, which is explained by a decrease in the specific area of the cell contact boundaries. Single-hot point spin modes of combustion of the parallelepiped sample with a discrete structure were found.</p>","PeriodicalId":595,"journal":{"name":"International Journal of Self-Propagating High-Temperature Synthesis","volume":"33 3","pages":"183 - 188"},"PeriodicalIF":0.5,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142214048","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Exploring the Influence of Zinc Doping on Nano Ferrites: A Review of Structural, Dielectric, and Magnetic Studies 探索锌掺杂对纳米铁氧体的影响:结构、介电和磁性研究综述
IF 0.5 Q4 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-09-06 DOI: 10.3103/S1061386224700110
R. C. Bharamagoudar, A. S. Patil, S. N. Mathad, L. B. Kankanawadi

Ferrites, known for their unique magnetic, structural, and electrical properties, have garnered significant attention across various scientific and industrial domains. This review provides a comprehensive analysis of the effects of zinc doping on three prominent ferrite materials: MnFe2O4, CuFe2O4, and CaFe2O4. Zinc doping, as a strategic method for tailoring these properties, has emerged as a promising avenue for enhancing their functionality and versatility. In the introduction part to the significance of ferrites, their wide-ranging applications are discussed. This review provides a basic overview of the many synthesis methods, such as co-precipitation, sol–gel, hydrothermal, solid-state etc., and a detailed investigating some nano ferrites. It then delves into the distinct characteristics of each ferrite, highlighting their magnetic behaviors, structural features, and electrical properties. The different methods to study the structural, magnetic, and dielectric properties are also discussed. The effects of zinc doping on MnFe2O4, CuFe2O4, and CaFe2O4 ferrites are discussed comprehensively. This study extensively concentrates on recent industrial applications like photoluminescence, biomedical, and sensors using spinel ferrites.

摘要铁氧体以其独特的磁性、结构和电学特性而闻名,在各个科学和工业领域都引起了极大的关注。本综述全面分析了锌掺杂对三种主要铁氧体材料的影响:MnFe2O4、CuFe2O4 和 CaFe2O4。掺锌作为调整这些特性的一种策略性方法,已成为增强其功能性和通用性的一条大有可为的途径。在介绍铁氧体重要性的部分,讨论了铁氧体的广泛应用。本综述概述了共沉淀、溶胶-凝胶、水热、固态等多种合成方法,并详细研究了一些纳米铁氧体。然后深入探讨了每种铁氧体的不同特性,重点介绍了它们的磁性行为、结构特征和电学特性。此外,还讨论了研究结构、磁性和介电性质的不同方法。还全面讨论了锌掺杂对 MnFe2O4、CuFe2O4 和 CaFe2O4 铁氧体的影响。本研究广泛集中于使用尖晶铁氧体的光致发光、生物医学和传感器等最新工业应用。
{"title":"Exploring the Influence of Zinc Doping on Nano Ferrites: A Review of Structural, Dielectric, and Magnetic Studies","authors":"R. C. Bharamagoudar,&nbsp;A. S. Patil,&nbsp;S. N. Mathad,&nbsp;L. B. Kankanawadi","doi":"10.3103/S1061386224700110","DOIUrl":"10.3103/S1061386224700110","url":null,"abstract":"<p>Ferrites, known for their unique magnetic, structural, and electrical properties, have garnered significant attention across various scientific and industrial domains. This review provides a comprehensive analysis of the effects of zinc doping on three prominent ferrite materials: MnFe<sub>2</sub>O<sub>4</sub>, CuFe<sub>2</sub>O<sub>4</sub>, and CaFe<sub>2</sub>O<sub>4</sub>. Zinc doping, as a strategic method for tailoring these properties, has emerged as a promising avenue for enhancing their functionality and versatility. In the introduction part to the significance of ferrites, their wide-ranging applications are discussed. This review provides a basic overview of the many synthesis methods, such as co-precipitation, sol–gel, hydrothermal, solid-state etc., and a detailed investigating some nano ferrites. It then delves into the distinct characteristics of each ferrite, highlighting their magnetic behaviors, structural features, and electrical properties. The different methods to study the structural, magnetic, and dielectric properties are also discussed. The effects of zinc doping on MnFe<sub>2</sub>O<sub>4</sub>, CuFe<sub>2</sub>O<sub>4</sub>, and CaFe<sub>2</sub>O<sub>4</sub> ferrites are discussed comprehensively. This study extensively concentrates on recent industrial applications like photoluminescence, biomedical, and sensors using spinel ferrites.</p>","PeriodicalId":595,"journal":{"name":"International Journal of Self-Propagating High-Temperature Synthesis","volume":"33 3","pages":"165 - 182"},"PeriodicalIF":0.5,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142214067","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Pyrochlore-Based Matrix by SHS 利用热固性硅酸盐(SHS)制造基于火成岩的基质
IF 0.5 Q4 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-09-06 DOI: 10.3103/S106138622470016X
T. V. Barinova, V. Yu. Barinov, V. N. Semenova

Matrix based on pyrochlore Y2Ti2O7 for immobilization of high-level radioactive waste was prepared via SHS process. The phase composition and structure of the synthesized matrices were characterized. The influence of aluminum additive and composition/amount of gases emitted during combustion on the porosity of the matrices was studied.

摘要 通过 SHS 工艺制备了用于固定高放射性废物的基于热长石 Y2Ti2O7 的基质。对合成基质的相组成和结构进行了表征。研究了铝添加剂和燃烧过程中排放的气体成分/数量对基质孔隙率的影响。
{"title":"Pyrochlore-Based Matrix by SHS","authors":"T. V. Barinova,&nbsp;V. Yu. Barinov,&nbsp;V. N. Semenova","doi":"10.3103/S106138622470016X","DOIUrl":"10.3103/S106138622470016X","url":null,"abstract":"<p>Matrix based on pyrochlore Y<sub>2</sub>Ti<sub>2</sub>O<sub>7</sub> for immobilization of high-level radioactive waste was prepared via SHS process. The phase composition and structure of the synthesized matrices were characterized. The influence of aluminum additive and composition/amount of gases emitted during combustion on the porosity of the matrices was studied.</p>","PeriodicalId":595,"journal":{"name":"International Journal of Self-Propagating High-Temperature Synthesis","volume":"33 3","pages":"209 - 213"},"PeriodicalIF":0.5,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142214073","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Self-Propagating High-Temperature Synthesis of MgAlON Using Mg Powder 使用镁粉的自推进式高温合成 MgAlON
IF 0.5 Q4 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-09-06 DOI: 10.3103/S1061386224700146
T. G. Akopdzhanyan, D. I. Abzalov

MgAlON was prepared by self-propagating high-temperature synthesis using powder mixture of aluminum, aluminum oxide, magnesium oxide, magnesium, and magnesium perchlorate as an oxidizer. The effect of magnesium oxidation and aluminum nitriding reactions on the combustion parameters was studied. It was revealed that combustion temperature and burning velocity increase as Mg is added. It was found that the combustion products derived from mixtures containing magnesium powder have a fine-grained structure composed by only MgAlON.

摘要 以铝、氧化铝、氧化镁、镁和高氯酸镁的粉末混合物为氧化剂,通过自蔓延高温合成制备了 MgAlON。研究了镁氧化和铝氮化反应对燃烧参数的影响。结果表明,随着镁的加入,燃烧温度和燃烧速度都会增加。研究发现,含有镁粉的混合物产生的燃烧产物具有仅由 MgAlON 组成的细粒结构。
{"title":"Self-Propagating High-Temperature Synthesis of MgAlON Using Mg Powder","authors":"T. G. Akopdzhanyan,&nbsp;D. I. Abzalov","doi":"10.3103/S1061386224700146","DOIUrl":"10.3103/S1061386224700146","url":null,"abstract":"<p>MgAlON was prepared by self-propagating high-temperature synthesis using powder mixture of aluminum, aluminum oxide, magnesium oxide, magnesium, and magnesium perchlorate as an oxidizer. The effect of magnesium oxidation and aluminum nitriding reactions on the combustion parameters was studied. It was revealed that combustion temperature and burning velocity increase as Mg is added. It was found that the combustion products derived from mixtures containing magnesium powder have a fine-grained structure composed by only MgAlON.</p>","PeriodicalId":595,"journal":{"name":"International Journal of Self-Propagating High-Temperature Synthesis","volume":"33 3","pages":"195 - 199"},"PeriodicalIF":0.5,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142214068","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Multifunctional Catalysts Based on High-Entropy Transition Metal Alloys 基于高熵过渡金属合金的多功能催化剂
IF 0.5 Q4 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-09-06 DOI: 10.3103/S1061386224700158
E. V. Pugacheva, S. Ya. Zhuk, I. M. Bystrova, K. A. Romazeva, D. M. Ikornikov, O. D. Boyarchenko, N. Yu. Khomenko, O. V. Belousova, V. N. Sanin, V. N. Borshch

High-entropy alloys were produced by centrifugal self-propagating high-temperature synthesis and used as precursors for preparation of catalysts for CO and propane deep oxidation and CO2 hydrogenation. The precursors were converted into catalysts by aluminum leaching and stabilization with hydrogen peroxide solution. Prepared FeCoNiCu, FeCoNiCuMo, FeCoNiCuMn, and FeCoNiCuCr catalysts were characterized by XRD, SEM/EDS, and BET methods and tested in the processes of deep oxidation of CO and propane and methanation of CO2. The highest CO2 conversion, 50.6%, with methane selectivity of 77.5% was achieved on FeCoNiCu catalyst at 400°C. The best catalyst for the deep oxidation process was shown to be FeCoNiCuCr, on which the temperature of 100% CO conversion was 250°C and 100% conversion of propane was achieved at 450°C.

摘要 通过离心自蔓延高温合成法制备了高熵合金,并将其用作制备一氧化碳和丙烷深度氧化及二氧化碳加氢催化剂的前驱体。前驱体通过铝浸出和过氧化氢溶液稳定转化为催化剂。制备的铁钴镍铜、铁钴镍铜钼、铁钴镍铜锰和铁钴镍铜铬催化剂通过 XRD、SEM/EDS 和 BET 方法进行了表征,并在 CO 和丙烷深度氧化和 CO2 甲烷化过程中进行了测试。在 400°C 下,铁钴镍铜催化剂的二氧化碳转化率最高,达到 50.6%,甲烷选择性为 77.5%。深氧化过程的最佳催化剂是 FeCoNiCuCr,其 CO 的 100% 转化温度为 250°C,丙烷的 100% 转化温度为 450°C。
{"title":"Multifunctional Catalysts Based on High-Entropy Transition Metal Alloys","authors":"E. V. Pugacheva,&nbsp;S. Ya. Zhuk,&nbsp;I. M. Bystrova,&nbsp;K. A. Romazeva,&nbsp;D. M. Ikornikov,&nbsp;O. D. Boyarchenko,&nbsp;N. Yu. Khomenko,&nbsp;O. V. Belousova,&nbsp;V. N. Sanin,&nbsp;V. N. Borshch","doi":"10.3103/S1061386224700158","DOIUrl":"10.3103/S1061386224700158","url":null,"abstract":"<p>High-entropy alloys were produced by centrifugal self-propagating high-temperature synthesis and used as precursors for preparation of catalysts for CO and propane deep oxidation and CO<sub>2</sub> hydrogenation. The precursors were converted into catalysts by aluminum leaching and stabilization with hydrogen peroxide solution. Prepared FeCoNiCu, FeCoNiCuMo, FeCoNiCuMn, and FeCoNiCuCr catalysts were characterized by XRD, SEM/EDS, and BET methods and tested in the processes of deep oxidation of CO and propane and methanation of CO<sub>2</sub>. The highest CO<sub>2</sub> conversion, 50.6%, with methane selectivity of 77.5% was achieved on FeCoNiCu catalyst at 400°C. The best catalyst for the deep oxidation process was shown to be FeCoNiCuCr, on which the temperature of 100% CO conversion was 250°C and 100% conversion of propane was achieved at 450°C.</p>","PeriodicalId":595,"journal":{"name":"International Journal of Self-Propagating High-Temperature Synthesis","volume":"33 3","pages":"200 - 208"},"PeriodicalIF":0.5,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142214069","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Evidence of an Oscillating Reaction during Heating of TiH2 in Air 在空气中加热 TiH2 时发生振荡反应的证据
IF 0.5 Q4 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-09-06 DOI: 10.3103/S1061386224700213
S. G. Vadchenko, A. S. Rogachev

A new phenomenon was discovered: an oscillatory combustion mode of hydrogen releasing under the non-isothermal decomposition of titanium hydride in air.

摘要 发现了一种新现象:氢化钛在空气中非等温分解时释放氢气的振荡燃烧模式。
{"title":"Evidence of an Oscillating Reaction during Heating of TiH2 in Air","authors":"S. G. Vadchenko,&nbsp;A. S. Rogachev","doi":"10.3103/S1061386224700213","DOIUrl":"10.3103/S1061386224700213","url":null,"abstract":"<p>A new phenomenon was discovered: an oscillatory combustion mode of hydrogen releasing under the non-isothermal decomposition of titanium hydride in air.</p>","PeriodicalId":595,"journal":{"name":"International Journal of Self-Propagating High-Temperature Synthesis","volume":"33 3","pages":"245 - 248"},"PeriodicalIF":0.5,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142214075","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Finger Formation during Combustion of Granular Mixture Zr + 0.5C in Inert Gas Flow 颗粒状混合物 Zr + 0.5C 在惰性气体流中燃烧时形成的指状物
IF 0.5 Q4 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-09-06 DOI: 10.3103/S1061386224700134
B. S. Seplyarskii, R. A. Kochetkov, T. G. Lisina, D. S. Vasilyev

A new mode of combustion of granular mixtures Zr + 0.5C in a co-current argon flow with the formation of a finger-like front instability was discovered. The observed phenomena were explained under the assumption of a decrease in the permeability of synthesis products due to significant shrinkage of the sample in the longitudinal direction, which prevented the filtration of argon through the products. Redirection of the gas flow into the gap between the granules and the side surface of the cylindrical reactor contributed to the formation of a finger. It was shown that a decrease in the sample size in the longitudinal direction is provided by the pressure drop of argon, and a decrease in the cross-section occurs under the action of surface tension forces due to a transverse temperature gradient.

摘要 发现了颗粒状混合物 Zr + 0.5C 在同流氩气流中燃烧的新模式,并形成了指状不稳定前沿。观察到的现象可以用以下假设来解释:由于样品在纵向上的显著收缩,合成产物的渗透性降低,从而阻碍了氩气通过产物的过滤。气流重新定向进入颗粒与圆柱形反应器侧表面之间的间隙,促成了 "手指 "的形成。研究表明,氩气的压降导致样品尺寸在纵向减小,横向温度梯度导致表面张力作用下横截面减小。
{"title":"Finger Formation during Combustion of Granular Mixture Zr + 0.5C in Inert Gas Flow","authors":"B. S. Seplyarskii,&nbsp;R. A. Kochetkov,&nbsp;T. G. Lisina,&nbsp;D. S. Vasilyev","doi":"10.3103/S1061386224700134","DOIUrl":"10.3103/S1061386224700134","url":null,"abstract":"<p>A new mode of combustion of granular mixtures Zr + 0.5C in a co-current argon flow with the formation of a finger-like front instability was discovered. The observed phenomena were explained under the assumption of a decrease in the permeability of synthesis products due to significant shrinkage of the sample in the longitudinal direction, which prevented the filtration of argon through the products. Redirection of the gas flow into the gap between the granules and the side surface of the cylindrical reactor contributed to the formation of a finger. It was shown that a decrease in the sample size in the longitudinal direction is provided by the pressure drop of argon, and a decrease in the cross-section occurs under the action of surface tension forces due to a transverse temperature gradient.</p>","PeriodicalId":595,"journal":{"name":"International Journal of Self-Propagating High-Temperature Synthesis","volume":"33 3","pages":"189 - 194"},"PeriodicalIF":0.5,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142214066","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
One-Step Combustion Method of HPA Preparation for LED Applications 用于 LED 应用的 HPA 制备的一步燃烧法
IF 0.5 Q4 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-09-06 DOI: 10.3103/S1061386224700183
P. Nayar, P. Yadav, U. Singh, A. Agnihotri

Alumina (Al2O3) is widely used in a variety of applications because it has superior physical and chemical properties which are high heat resistance, excellent electrical isolation, abrasion resistance, and high corrosion resistance. Generally, alumina is manufactured with a purity of 99.6–99.9% mainly by the Bayer process with bauxite as the starting material. It is used in refractory products, spark plugs, IC substrates, and so on. High-purity alumina (HPA), which has a purity of more than 99.99% and has a uniform fine particle, is widely used in translucent tubes for high-pressure sodium lamps, single crystal materials such as sapphires for watch covers, high-strength ceramic tools, abrasives for magnetic tape, and the like. In recent years, the demand for high-purity alumina has been expanding in fields that are expected to show a high growth rate e.g., display materials, energy, automobiles, semiconductors, and computers. There are several complicated processes reported in literature to produce single phase α-HPA, which consumes more energy, and power and are very costly. In this paper, we report the preparation of nano-α alumina powders with a purity of 3N (99.9%) by a simple, economical, and faster method i.e., one-step auto combustion method. To obtain single phase α-alumina, the calcination temperature required is 1200°C but, in our work, we achieved single phase α-alumina at 500°C temperature by one-step auto combustion method. The as-prepared HPA is characterized through XRD, BET surface area, SEM and ICP, TGA, and LIBS to test for purity and its application in LED fabrication.

摘要 氧化铝(Al2O3)具有优异的物理和化学特性,包括高耐热性、优异的电气绝缘性、耐磨性和高耐腐蚀性,因此被广泛应用于各种领域。一般来说,氧化铝的纯度在 99.6-99.9% 之间,主要是以铝土矿为起始原料,通过拜耳工艺制造而成。它主要用于耐火产品、火花塞、集成电路基板等。高纯氧化铝(HPA)的纯度在 99.99% 以上,颗粒均匀细小,广泛用于高压钠灯的半透明管、手表盖的蓝宝石等单晶材料、高强度陶瓷工具、磁带磨料等。近年来,高纯氧化铝的需求在不断扩大,预计将在显示材料、能源、汽车、半导体和计算机等领域呈现高速增长。文献报道了几种生产单相 α-HPA 的复杂工艺,这些工艺能耗和电耗较高,成本也很高。本文报道了一种简单、经济、快速的方法,即一步自动燃烧法,制备出纯度为 3N (99.9%) 的纳米 α 氧化铝粉末。要获得单相α-氧化铝,煅烧温度需要 1200°C,但在我们的工作中,我们通过一步自动燃烧法在 500°C 温度下获得了单相α-氧化铝。我们通过 XRD、BET 表面积、SEM 以及 ICP、TGA 和 LIBS 对制备的 HPA 进行了表征,以检测其纯度及其在 LED 制造中的应用。
{"title":"One-Step Combustion Method of HPA Preparation for LED Applications","authors":"P. Nayar,&nbsp;P. Yadav,&nbsp;U. Singh,&nbsp;A. Agnihotri","doi":"10.3103/S1061386224700183","DOIUrl":"10.3103/S1061386224700183","url":null,"abstract":"<p>Alumina (Al<sub>2</sub>O<sub>3</sub>) is widely used in a variety of applications because it has superior physical and chemical properties which are high heat resistance, excellent electrical isolation, abrasion resistance, and high corrosion resistance. Generally, alumina is manufactured with a purity of 99.6–99.9% mainly by the Bayer process with bauxite as the starting material. It is used in refractory products, spark plugs, IC substrates, and so on. High-purity alumina (HPA), which has a purity of more than 99.99% and has a uniform fine particle, is widely used in translucent tubes for high-pressure sodium lamps, single crystal materials such as sapphires for watch covers, high-strength ceramic tools, abrasives for magnetic tape, and the like. In recent years, the demand for high-purity alumina has been expanding in fields that are expected to show a high growth rate e.g., display materials, energy, automobiles, semiconductors, and computers. There are several complicated processes reported in literature to produce single phase α-HPA, which consumes more energy, and power and are very costly. In this paper, we report the preparation of nano-α alumina powders with a purity of 3N (99.9%) by a simple, economical, and faster method i.e., one-step auto combustion method. To obtain single phase α-alumina, the calcination temperature required is 1200°C but, in our work, we achieved single phase α-alumina at 500°C temperature by one-step auto combustion method. The as-prepared HPA is characterized through XRD, BET surface area, SEM and ICP, TGA, and LIBS to test for purity and its application in LED fabrication.</p>","PeriodicalId":595,"journal":{"name":"International Journal of Self-Propagating High-Temperature Synthesis","volume":"33 3","pages":"223 - 227"},"PeriodicalIF":0.5,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142214071","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Titanium Carbide Powder from Magnesiothermic Combustion of Leucoxene: Obtained Particulate Nickel-Coated for Use as MMCs Reinforcement 从褐煤的镁热燃烧中获得碳化钛粉末:用作 MMCs 增强材料的镍涂层微粒
IF 0.5 Q4 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-09-06 DOI: 10.3103/S1061386224700195
T. Chanadee, K. Vepulanont

Titanium carbide (TiC) powder was synthesized by the magnesiothermic combustion of the TiO2-rich alteration product leucoxene and activated carbon (AC) in argon. Leucoxene and C were combined at a molar ratio of 1.0 : 1.5, and the effect of magnesium (Mg) fuel in the reaction system was studied at ratios of 1.0, 1.5, 2.0, 2.5, and 3.0. XRD analysis showed that the as-leached powder from a reactant mixture with a Mg molar ratio of 3.0 has fewer unwanted phases, and that leucoxene, C, Mg mixed at 1.0 : 1.5 : 3.0 produce TiC powder of a higher purity than the other reacted mixtures. The higher purity of the product was due to the more exothermic character of the combustion reaction, which had a higher enthalpy of reaction (ΔH) and adiabatic temperature (Tad). SEM observation of the as-leached powder revealed agglomerated fine particles of sub-micrometer size. The TiC powder was successfully coated with nickel by an electroless plating process. SEM/EDX demonstrated that the Ni-coated TiC powder consists of Ni particles smaller than 500 nm, which are well distributed on TiC particles.

摘要碳化钛(TiC)粉末是通过富含TiO2的改质产物褐煤和活性碳(AC)在氩气中的镁热燃烧合成的。褐煤和碳的摩尔比为 1.0:1.5,研究了反应体系中镁(Mg)燃料的影响,其比例分别为 1.0、1.5、2.0、2.5 和 3.0。XRD 分析表明,镁摩尔比为 3.0 的反应物混合物的浸出粉末中不需要的相较少。产品纯度较高的原因是燃烧反应的放热性较强,反应焓(ΔH)和绝热温度(Tad)较高。对浸出粉末的扫描电子显微镜观察显示出亚微米大小的团聚细颗粒。通过无电解电镀工艺,TiC 粉末成功镀上了镍。SEM/EDX 显示,镍涂层 TiC 粉末由小于 500 nm 的镍颗粒组成,这些镍颗粒在 TiC 颗粒上分布均匀。
{"title":"Titanium Carbide Powder from Magnesiothermic Combustion of Leucoxene: Obtained Particulate Nickel-Coated for Use as MMCs Reinforcement","authors":"T. Chanadee,&nbsp;K. Vepulanont","doi":"10.3103/S1061386224700195","DOIUrl":"10.3103/S1061386224700195","url":null,"abstract":"<p>Titanium carbide (TiC) powder was synthesized by the magnesiothermic combustion of the TiO<sub>2</sub>-rich alteration product leucoxene and activated carbon (AC) in argon. Leucoxene and C were combined at a molar ratio of 1.0 : 1.5, and the effect of magnesium (Mg) fuel in the reaction system was studied at ratios of 1.0, 1.5, 2.0, 2.5, and 3.0. XRD analysis showed that the as-leached powder from a reactant mixture with a Mg molar ratio of 3.0 has fewer unwanted phases, and that leucoxene, C, Mg mixed at 1.0 : 1.5 : 3.0 produce TiC powder of a higher purity than the other reacted mixtures. The higher purity of the product was due to the more exothermic character of the combustion reaction, which had a higher enthalpy of reaction (Δ<i>H</i>) and adiabatic temperature (<i>T</i><sub>ad</sub>). SEM observation of the as-leached powder revealed agglomerated fine particles of sub-micrometer size. The TiC powder was successfully coated with nickel by an electroless plating process. SEM/EDX demonstrated that the Ni-coated TiC powder consists of Ni particles smaller than 500 nm, which are well distributed on TiC particles.</p>","PeriodicalId":595,"journal":{"name":"International Journal of Self-Propagating High-Temperature Synthesis","volume":"33 3","pages":"228 - 236"},"PeriodicalIF":0.5,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142214072","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
International Journal of Self-Propagating High-Temperature Synthesis
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1