B. S. Seplyarskii, R. A. Kochetkov, T. G. Lisina, N. I. Abzalov, D. S. Vasilyev
{"title":"Combustion of Ti–Si–C Mixtures: Impact of Medium Structure and Impurity Gas Release","authors":"B. S. Seplyarskii, R. A. Kochetkov, T. G. Lisina, N. I. Abzalov, D. S. Vasilyev","doi":"10.3103/S106138622304009X","DOIUrl":null,"url":null,"abstract":"<p>A study was made of the combustion of powder and granular mixtures (1 – <i>X</i>)(Ti + C) + <i>X</i>(5Ti + 3Si), where 0 ≤ <i>X</i> ≤ 1, on the base of titanium powder with the characteristic size of Ti particles <i>d</i>(Ti) = 120 μm. The values of the burning velocity of powder mixtures were shown to depend on the free volume above the charge in the reactor. The velocity dependences on <i>X</i> had a maximum at about <i>X</i> = 0.4 in contrast to minimum in the earlier study of the same mixtures with <i>d</i>(Ti) = 20 μm. The results were explained using the convective–conductive model of combustion. It was shown that the velocity of the combustion front of the powder mixture depends on the location of the predominant release of impurity gas in the charge: in front of or behind the melt layer. The maximum content of the liquid phase in the reaction mixture at 0.4 < <i>X</i> < 0.6 ensured the high filtration resistance of the melt layer and its maximum (at <i>d</i>(Ti) = 120 μm) or minimum (at <i>d</i>(Ti) = 20 μm) propagation velocity. Changing the structure of mixtures by granulation ensured the leveling of the effect of impurity gases and a decrease in the burning velocity corresponding to the decrease in the content of desorbing components, titanium and soot.</p>","PeriodicalId":595,"journal":{"name":"International Journal of Self-Propagating High-Temperature Synthesis","volume":"32 4","pages":"258 - 263"},"PeriodicalIF":0.5000,"publicationDate":"2024-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Self-Propagating High-Temperature Synthesis","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.3103/S106138622304009X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
A study was made of the combustion of powder and granular mixtures (1 – X)(Ti + C) + X(5Ti + 3Si), where 0 ≤ X ≤ 1, on the base of titanium powder with the characteristic size of Ti particles d(Ti) = 120 μm. The values of the burning velocity of powder mixtures were shown to depend on the free volume above the charge in the reactor. The velocity dependences on X had a maximum at about X = 0.4 in contrast to minimum in the earlier study of the same mixtures with d(Ti) = 20 μm. The results were explained using the convective–conductive model of combustion. It was shown that the velocity of the combustion front of the powder mixture depends on the location of the predominant release of impurity gas in the charge: in front of or behind the melt layer. The maximum content of the liquid phase in the reaction mixture at 0.4 < X < 0.6 ensured the high filtration resistance of the melt layer and its maximum (at d(Ti) = 120 μm) or minimum (at d(Ti) = 20 μm) propagation velocity. Changing the structure of mixtures by granulation ensured the leveling of the effect of impurity gases and a decrease in the burning velocity corresponding to the decrease in the content of desorbing components, titanium and soot.
期刊介绍:
International Journal of Self-Propagating High-Temperature Synthesis is an international journal covering a wide range of topics concerned with self-propagating high-temperature synthesis (SHS), the process for the production of advanced materials based on solid-state combustion utilizing internally generated chemical energy. Subjects range from the fundamentals of SHS processes, chemistry and technology of SHS products and advanced materials to problems concerned with related fields, such as the kinetics and thermodynamics of high-temperature chemical reactions, combustion theory, macroscopic kinetics of nonisothermic processes, etc. The journal is intended to provide a wide-ranging exchange of research results and a better understanding of developmental and innovative trends in SHS science and applications.