Biomaterial-based regenerative therapeutic strategies for spinal cord injury

IF 8.6 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Npg Asia Materials Pub Date : 2024-01-19 DOI:10.1038/s41427-023-00526-4
Keyi Chen, Wei Yu, Genjiang Zheng, Zeng Xu, Chen Yang, Yunhao Wang, Zhihao Yue, Weien Yuan, Bo Hu, Huajiang Chen
{"title":"Biomaterial-based regenerative therapeutic strategies for spinal cord injury","authors":"Keyi Chen, Wei Yu, Genjiang Zheng, Zeng Xu, Chen Yang, Yunhao Wang, Zhihao Yue, Weien Yuan, Bo Hu, Huajiang Chen","doi":"10.1038/s41427-023-00526-4","DOIUrl":null,"url":null,"abstract":"<p>As one of the most intractable neurological diseases, spinal cord injury (SCI) often leads to permanent neurological impairment in patients. Unfortunately, due to the complex pathological mechanisms and unique postinjury microenvironment, there is currently no way to completely repair the injured spinal cord. In recent years, with the rapid development of tissue engineering technology, the combination of biomaterials and medicine has provided a new idea for treating SCI. Here, we systematically summarize representative biomaterials, including natural, synthetic, nano, and hybrid materials, and their applications in SCI treatment. In addition, we describe several state-of-the-art fabrication techniques for tissue engineering. Importantly, we provide novel insights for the use of biomaterial-based therapeutic strategies to reduce secondary damage and promote repair. Finally, we discuss several biomaterial clinical studies. This review aims to provide a reference and new insights for the future exploration of spinal cord regeneration strategies.</p>","PeriodicalId":19382,"journal":{"name":"Npg Asia Materials","volume":"268 1","pages":""},"PeriodicalIF":8.6000,"publicationDate":"2024-01-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Npg Asia Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1038/s41427-023-00526-4","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

As one of the most intractable neurological diseases, spinal cord injury (SCI) often leads to permanent neurological impairment in patients. Unfortunately, due to the complex pathological mechanisms and unique postinjury microenvironment, there is currently no way to completely repair the injured spinal cord. In recent years, with the rapid development of tissue engineering technology, the combination of biomaterials and medicine has provided a new idea for treating SCI. Here, we systematically summarize representative biomaterials, including natural, synthetic, nano, and hybrid materials, and their applications in SCI treatment. In addition, we describe several state-of-the-art fabrication techniques for tissue engineering. Importantly, we provide novel insights for the use of biomaterial-based therapeutic strategies to reduce secondary damage and promote repair. Finally, we discuss several biomaterial clinical studies. This review aims to provide a reference and new insights for the future exploration of spinal cord regeneration strategies.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于生物材料的脊髓损伤再生治疗策略
作为最棘手的神经系统疾病之一,脊髓损伤(SCI)通常会导致患者永久性神经功能损伤。遗憾的是,由于其复杂的病理机制和独特的损伤后微环境,目前还没有完全修复损伤脊髓的方法。近年来,随着组织工程技术的飞速发展,生物材料与医学的结合为治疗 SCI 提供了新的思路。在此,我们系统地总结了具有代表性的生物材料,包括天然材料、合成材料、纳米材料和混合材料,以及它们在 SCI 治疗中的应用。此外,我们还介绍了几种最先进的组织工程制造技术。重要的是,我们为使用基于生物材料的治疗策略减少二次损伤和促进修复提供了新的见解。最后,我们讨论了几项生物材料临床研究。本综述旨在为脊髓再生策略的未来探索提供参考和新见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Npg Asia Materials
Npg Asia Materials MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
15.40
自引率
1.00%
发文量
87
审稿时长
2 months
期刊介绍: NPG Asia Materials is an open access, international journal that publishes peer-reviewed review and primary research articles in the field of materials sciences. The journal has a global outlook and reach, with a base in the Asia-Pacific region to reflect the significant and growing output of materials research from this area. The target audience for NPG Asia Materials is scientists and researchers involved in materials research, covering a wide range of disciplines including physical and chemical sciences, biotechnology, and nanotechnology. The journal particularly welcomes high-quality articles from rapidly advancing areas that bridge the gap between materials science and engineering, as well as the classical disciplines of physics, chemistry, and biology. NPG Asia Materials is abstracted/indexed in Journal Citation Reports/Science Edition Web of Knowledge, Google Scholar, Chemical Abstract Services, Scopus, Ulrichsweb (ProQuest), and Scirus.
期刊最新文献
Unprecedented mechanical wave energy absorption observed in multifunctional bioinspired architected metamaterials Vortex confinement through an unquantized magnetic flux Lithium-ion battery recycling—a review of the material supply and policy infrastructure Tailoring the grain boundary structure and chemistry of the dendrite-free garnet solid electrolyte Li6.1Ga0.3La3Zr2O12 High tolerance of the superconducting current to large grain boundary angles in potassium-doped BaFe2As2
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1