Zongwu Wu, Xingdong Wang, Qirui Tu, An Hu, Jianyi Kong
{"title":"Modal characteristics of rollers immersed in different fluids: experimental and numerical analysis","authors":"Zongwu Wu, Xingdong Wang, Qirui Tu, An Hu, Jianyi Kong","doi":"10.1007/s10999-023-09699-w","DOIUrl":null,"url":null,"abstract":"<div><p>The immersed roller is very common in the roll-to-roll industry, such as hot dip galvanizing, electroplating, roll coating. In these applications, the strip is developing thinner and wider, and its flexibility is also strengthening. The vibration of the sinking roller has an increasingly significant impact on its product quality. A theoretical model was established to study the sink roller immersed in fluids, and modal tests and corresponding finite element simulations were carried out to study the sink roller's characteristics. The effects of roller density, wall thickness, fluid density, viscosity, and constraint conditions on modal characteristics were investigated. The results were well-validated, and the modal tests in air with and without a rod have high consistency, proving the reliability. The first six peak values of FRF curves are clear when immersed in water and hydraulic oil, but only the first three are evident in glycerin. It is observed that the viscosity of glycerin has a minor effect on natural frequencies, but the added damping factor grows when viscosity increases. The added mass factor rises linearly with the growth of wall thickness or liquid density while decreasing when the structure's density increases. The added mass factors of the (1,2)th and (2,2)th modes are more significant than the bending modes. A rigid-body displacement occurs at the constrained end journal of bending mode for rollers in liquids. Liquid density is the main factor affecting natural frequencies, especially for aluminum rollers. The maximum frequency growth rates under the constrained state of the steel and aluminum rollers in water are 5.7% and 20.4%, respectively, on the (2,2)th mode. Moreover, it increases with the increase of liquid density and viscosity, which leads to higher resonance probability. It can provide a basis for the dynamics research of similar systems.</p></div>","PeriodicalId":593,"journal":{"name":"International Journal of Mechanics and Materials in Design","volume":"20 4","pages":"717 - 742"},"PeriodicalIF":2.7000,"publicationDate":"2024-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Mechanics and Materials in Design","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s10999-023-09699-w","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The immersed roller is very common in the roll-to-roll industry, such as hot dip galvanizing, electroplating, roll coating. In these applications, the strip is developing thinner and wider, and its flexibility is also strengthening. The vibration of the sinking roller has an increasingly significant impact on its product quality. A theoretical model was established to study the sink roller immersed in fluids, and modal tests and corresponding finite element simulations were carried out to study the sink roller's characteristics. The effects of roller density, wall thickness, fluid density, viscosity, and constraint conditions on modal characteristics were investigated. The results were well-validated, and the modal tests in air with and without a rod have high consistency, proving the reliability. The first six peak values of FRF curves are clear when immersed in water and hydraulic oil, but only the first three are evident in glycerin. It is observed that the viscosity of glycerin has a minor effect on natural frequencies, but the added damping factor grows when viscosity increases. The added mass factor rises linearly with the growth of wall thickness or liquid density while decreasing when the structure's density increases. The added mass factors of the (1,2)th and (2,2)th modes are more significant than the bending modes. A rigid-body displacement occurs at the constrained end journal of bending mode for rollers in liquids. Liquid density is the main factor affecting natural frequencies, especially for aluminum rollers. The maximum frequency growth rates under the constrained state of the steel and aluminum rollers in water are 5.7% and 20.4%, respectively, on the (2,2)th mode. Moreover, it increases with the increase of liquid density and viscosity, which leads to higher resonance probability. It can provide a basis for the dynamics research of similar systems.
期刊介绍:
It is the objective of this journal to provide an effective medium for the dissemination of recent advances and original works in mechanics and materials'' engineering and their impact on the design process in an integrated, highly focused and coherent format. The goal is to enable mechanical, aeronautical, civil, automotive, biomedical, chemical and nuclear engineers, researchers and scientists to keep abreast of recent developments and exchange ideas on a number of topics relating to the use of mechanics and materials in design.
Analytical synopsis of contents:
The following non-exhaustive list is considered to be within the scope of the International Journal of Mechanics and Materials in Design:
Intelligent Design:
Nano-engineering and Nano-science in Design;
Smart Materials and Adaptive Structures in Design;
Mechanism(s) Design;
Design against Failure;
Design for Manufacturing;
Design of Ultralight Structures;
Design for a Clean Environment;
Impact and Crashworthiness;
Microelectronic Packaging Systems.
Advanced Materials in Design:
Newly Engineered Materials;
Smart Materials and Adaptive Structures;
Micromechanical Modelling of Composites;
Damage Characterisation of Advanced/Traditional Materials;
Alternative Use of Traditional Materials in Design;
Functionally Graded Materials;
Failure Analysis: Fatigue and Fracture;
Multiscale Modelling Concepts and Methodology;
Interfaces, interfacial properties and characterisation.
Design Analysis and Optimisation:
Shape and Topology Optimisation;
Structural Optimisation;
Optimisation Algorithms in Design;
Nonlinear Mechanics in Design;
Novel Numerical Tools in Design;
Geometric Modelling and CAD Tools in Design;
FEM, BEM and Hybrid Methods;
Integrated Computer Aided Design;
Computational Failure Analysis;
Coupled Thermo-Electro-Mechanical Designs.