Breaking boundaries: the advancements in transdermal delivery of antibiotics.

IF 6.5 2区 医学 Q1 PHARMACOLOGY & PHARMACY Drug Delivery Pub Date : 2024-12-01 Epub Date: 2024-01-19 DOI:10.1080/10717544.2024.2304251
Ahlam Zaid Alkilani, Rania Hamed, Batool Musleh, Zaina Sharaire
{"title":"Breaking boundaries: the advancements in transdermal delivery of antibiotics.","authors":"Ahlam Zaid Alkilani, Rania Hamed, Batool Musleh, Zaina Sharaire","doi":"10.1080/10717544.2024.2304251","DOIUrl":null,"url":null,"abstract":"<p><p>Transdermal drug delivery systems (TDDS) for antibiotics have seen significant advances in recent years that aimed to improve the efficacy and safety of these drugs. TDDS offer many advantages over other conventional delivery systems such as non-invasiveness, controlled-release pattern, avoidance of first-pass metabolism. The objective of this review is to provide an overview on the recent advances in the TDDS of different groups of antibiotics including β-lactams, tetracyclines, macrolides, and lincosamides, utilized for their effective delivery through the skin and to explore the challenges associated with this field. The majority of antibiotics do not have favorable properties for passive transdermal delivery. Thus, novel strategies have been employed to improve the delivery of antibiotics through the skin, such as the use of nanotechnology (nanoparticles, solid-lipid nanoparticles, nanoemulsions, vesicular carriers, and liposomes) or the physical enhancement techniques like microneedles and ultrasound. In conclusion, the transdermal delivery systems could be a promising method for delivering antibiotics that have the potential to improve patient outcomes and enhance the efficacy of drugs. Further research and development are still needed to explore the potential of delivering more antibiotic drugs by using various transdermal drug delivery approaches.</p>","PeriodicalId":11679,"journal":{"name":"Drug Delivery","volume":"31 1","pages":"2304251"},"PeriodicalIF":6.5000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10802811/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Drug Delivery","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/10717544.2024.2304251","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/19 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

Abstract

Transdermal drug delivery systems (TDDS) for antibiotics have seen significant advances in recent years that aimed to improve the efficacy and safety of these drugs. TDDS offer many advantages over other conventional delivery systems such as non-invasiveness, controlled-release pattern, avoidance of first-pass metabolism. The objective of this review is to provide an overview on the recent advances in the TDDS of different groups of antibiotics including β-lactams, tetracyclines, macrolides, and lincosamides, utilized for their effective delivery through the skin and to explore the challenges associated with this field. The majority of antibiotics do not have favorable properties for passive transdermal delivery. Thus, novel strategies have been employed to improve the delivery of antibiotics through the skin, such as the use of nanotechnology (nanoparticles, solid-lipid nanoparticles, nanoemulsions, vesicular carriers, and liposomes) or the physical enhancement techniques like microneedles and ultrasound. In conclusion, the transdermal delivery systems could be a promising method for delivering antibiotics that have the potential to improve patient outcomes and enhance the efficacy of drugs. Further research and development are still needed to explore the potential of delivering more antibiotic drugs by using various transdermal drug delivery approaches.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
打破界限:抗生素透皮给药技术的进步。
近年来,抗生素透皮给药系统(TDDS)取得了重大进展,旨在提高这些药物的疗效和安全性。与其他传统给药系统相比,透皮给药系统具有许多优势,如非侵入性、控释模式、避免首过代谢等。本综述旨在概述不同类抗生素(包括 β-内酰胺类、四环素类、大环内酯类和林可酰胺类)的 TDDS 的最新进展,并探讨该领域所面临的挑战。大多数抗生素都不具备被动透皮给药的有利特性。因此,人们采用了新的策略来改善抗生素的透皮给药,如使用纳米技术(纳米颗粒、固脂纳米颗粒、纳米乳液、囊泡载体和脂质体)或微针和超声波等物理增强技术。总之,透皮给药系统是一种很有前景的抗生素给药方法,有可能改善患者的治疗效果并提高药物的疗效。目前仍需进一步研究和开发,以探索利用各种透皮给药方法输送更多抗生素药物的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Drug Delivery
Drug Delivery 医学-药学
CiteScore
11.80
自引率
5.00%
发文量
250
审稿时长
3.3 months
期刊介绍: Drug Delivery is an open access journal serving the academic and industrial communities with peer reviewed coverage of basic research, development, and application principles of drug delivery and targeting at molecular, cellular, and higher levels. Topics covered include all delivery systems including oral, pulmonary, nasal, parenteral and transdermal, and modes of entry such as controlled release systems; microcapsules, liposomes, vesicles, and macromolecular conjugates; antibody targeting; protein/peptide delivery; DNA, oligonucleotide and siRNA delivery. Papers on drug dosage forms and their optimization will not be considered unless they directly relate to the original drug delivery issues. Published articles present original research and critical reviews.
期刊最新文献
Statement of Retraction. Statement of Retraction. Retraction. Advances in the use of local anesthetic extended-release systems in pain management. Biodegradable polymeric insulin microneedles - a design and materials perspective review.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1