Photothermal interface with high-adhesive superhydrophobicity to construct vapor splitting module for hydrogen evolution from seawater

IF 20.2 1区 化学 Q1 CHEMISTRY, PHYSICAL Applied Catalysis B: Environmental Pub Date : 2024-01-17 DOI:10.1016/j.apcatb.2024.123743
Wei Wang , Yanan Li , Xiao Yu , Li Zhang , Yan Wang , Haichuan He , Henan Zhao , Wansong Chen , Jianghua Li , Liu Deng , You-Nian Liu
{"title":"Photothermal interface with high-adhesive superhydrophobicity to construct vapor splitting module for hydrogen evolution from seawater","authors":"Wei Wang ,&nbsp;Yanan Li ,&nbsp;Xiao Yu ,&nbsp;Li Zhang ,&nbsp;Yan Wang ,&nbsp;Haichuan He ,&nbsp;Henan Zhao ,&nbsp;Wansong Chen ,&nbsp;Jianghua Li ,&nbsp;Liu Deng ,&nbsp;You-Nian Liu","doi":"10.1016/j.apcatb.2024.123743","DOIUrl":null,"url":null,"abstract":"<div><p><span>Direct photocatalytic hydrogen evolution from seawater is an appealing approach to migrate the crisis of carbon emissions. However, limited solar energy utilization and catalyst poisoning are two obstacles to the hydrogen evolution from seawater. Herein, a microneedle module that integrates with solar-driven vapor generation and vapor splitting to realize directly solar-driven seawater splitting has been designed. The photothermal pedestal with high-adhesive superhydrophobicity not only provides sufficient vapor generation, but also isolates harmful substances such as salt in seawater from photocatalysts. Besides, the pedestal with superhydrophobicity and photothermal effect can provide high-temperature gas–solid reaction sites for photocatalyst microneedles to thermodynamically promote the desorption of hydrogen. Thus, the integrated module exhibits a remarkable hydrogen evolution rate of 200.5 mmol g</span><sup>–1</sup> h<sup>–1</sup> in seawater. The rational design of multifunctional interfaces opens a new window for high-efficiency direct seawater splitting to hydrogen evolution.</p></div>","PeriodicalId":244,"journal":{"name":"Applied Catalysis B: Environmental","volume":null,"pages":null},"PeriodicalIF":20.2000,"publicationDate":"2024-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Catalysis B: Environmental","FirstCategoryId":"1","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0926337324000547","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Direct photocatalytic hydrogen evolution from seawater is an appealing approach to migrate the crisis of carbon emissions. However, limited solar energy utilization and catalyst poisoning are two obstacles to the hydrogen evolution from seawater. Herein, a microneedle module that integrates with solar-driven vapor generation and vapor splitting to realize directly solar-driven seawater splitting has been designed. The photothermal pedestal with high-adhesive superhydrophobicity not only provides sufficient vapor generation, but also isolates harmful substances such as salt in seawater from photocatalysts. Besides, the pedestal with superhydrophobicity and photothermal effect can provide high-temperature gas–solid reaction sites for photocatalyst microneedles to thermodynamically promote the desorption of hydrogen. Thus, the integrated module exhibits a remarkable hydrogen evolution rate of 200.5 mmol g–1 h–1 in seawater. The rational design of multifunctional interfaces opens a new window for high-efficiency direct seawater splitting to hydrogen evolution.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
具有高粘附性超疏水性的光热界面,用于构建海水氢气进化的水汽分离模块
从海水中直接进行光催化氢气进化是解决碳排放危机的一种有吸引力的方法。然而,太阳能利用率有限和催化剂中毒是海水制氢的两大障碍。在此,我们设计了一种集太阳能驱动的水汽生成和水汽分裂于一体的微针模块,以直接实现太阳能驱动的海水分裂。具有高粘附性超疏水性的光热基座不仅能提供充足的水汽生成,还能将海水中的盐分等有害物质与光催化剂隔离。此外,具有超疏水性和光热效应的基座还能为光催化剂微针提供高温气固反应场所,从热力学角度促进氢气解吸。因此,该集成模块在海水中的氢进化速率高达 200.5 mmol g-1 h-1。多功能界面的合理设计为高效直接海水分离制氢打开了一扇新窗口。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Applied Catalysis B: Environmental
Applied Catalysis B: Environmental 环境科学-工程:化工
CiteScore
38.60
自引率
6.30%
发文量
1117
审稿时长
24 days
期刊介绍: Applied Catalysis B: Environment and Energy (formerly Applied Catalysis B: Environmental) is a journal that focuses on the transition towards cleaner and more sustainable energy sources. The journal's publications cover a wide range of topics, including: 1.Catalytic elimination of environmental pollutants such as nitrogen oxides, carbon monoxide, sulfur compounds, chlorinated and other organic compounds, and soot emitted from stationary or mobile sources. 2.Basic understanding of catalysts used in environmental pollution abatement, particularly in industrial processes. 3.All aspects of preparation, characterization, activation, deactivation, and regeneration of novel and commercially applicable environmental catalysts. 4.New catalytic routes and processes for the production of clean energy, such as hydrogen generation via catalytic fuel processing, and new catalysts and electrocatalysts for fuel cells. 5.Catalytic reactions that convert wastes into useful products. 6.Clean manufacturing techniques that replace toxic chemicals with environmentally friendly catalysts. 7.Scientific aspects of photocatalytic processes and a basic understanding of photocatalysts as applied to environmental problems. 8.New catalytic combustion technologies and catalysts. 9.New catalytic non-enzymatic transformations of biomass components. The journal is abstracted and indexed in API Abstracts, Research Alert, Chemical Abstracts, Web of Science, Theoretical Chemical Engineering Abstracts, Engineering, Technology & Applied Sciences, and others.
期刊最新文献
Conversion of CO2 to higher alcohols on K-CuZnAl/Zr-CuFe composite Effects of the chemical states of N sites and mesoporosity of N-doped carbon supports on single-atom Ru catalysts during CO2-to-formate conversion Visible-light responsive TiO2 for the complete photocatalytic decomposition of volatile organic compounds (VOCs) and its efficient acceleration by thermal energy Controlled doping of ultralow amounts Ru on Ni cathode for PEMWE: Experimental and theoretical elucidation of enhanced performance Mesoporous zeolite ZSM-5 confined Cu nanoclusters for efficient selective catalytic reduction of NOx by NH3
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1