Exploring the energy landscape of graphynes for noble gas adsorption using swarm intelligence

Megha Rajeevan, Rotti Srinivasamurthy Swathi
{"title":"Exploring the energy landscape of graphynes for noble gas adsorption using swarm intelligence","authors":"Megha Rajeevan,&nbsp;Rotti Srinivasamurthy Swathi","doi":"10.1016/j.aichem.2024.100048","DOIUrl":null,"url":null,"abstract":"<div><p>Gas adsorption on one-atom-thick membranes is a growing technology for separation applications owing to its excellent energy efficiency. Herein, we investigate the adsorption of the noble gases, Ne, Ar and Kr on graphynes (GYs), a novel class of one-atom-thick carbon membranes using a swarm intelligence technique, namely particle swarm optimization (PSO). Modeling the adsorption of noble gas clusters on two-dimensional substrates requires a thorough examination of the energy landscape. The high dimensionality of the problem makes it tricky to employ ab initio methods for such studies, necessitating the use of a metaheuristic global optimization technique such as PSO. We explored the adsorption of 1–30 atoms of Ne, Ar and Kr on α-, β-, γ- and rhombic-GYs to predict the most suitable form of GY for the adsorption of each of the gases. Employing the dispersion-corrected density functional theory (DFT-D) data for the adsorption of single gas atoms as the reference data, we parametrized two empirical pairwise potentials, namely, Lennard-Jones (LJ) and improved Lennard-Jones (ILJ) potentials. We then analyzed the growth pattern as well as the energetics of adsorption using the parametrized potentials, in combination with the PSO technique, which enabled us to predict the best possible membrane for the adsorption of the noble gases: α-GY for Ne and γ-GY for Ar and Kr. The accuracy of our modeling approach is further validated against DFT-D computations thereby establishing that PSO, when combined with the ILJ potential, can serve as a computationally feasible approach for modeling gas adsorption on GYs.</p></div>","PeriodicalId":72302,"journal":{"name":"Artificial intelligence chemistry","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S294974772400006X/pdfft?md5=13e8fd3ef313b8180bab9c56f7c85352&pid=1-s2.0-S294974772400006X-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Artificial intelligence chemistry","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S294974772400006X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Gas adsorption on one-atom-thick membranes is a growing technology for separation applications owing to its excellent energy efficiency. Herein, we investigate the adsorption of the noble gases, Ne, Ar and Kr on graphynes (GYs), a novel class of one-atom-thick carbon membranes using a swarm intelligence technique, namely particle swarm optimization (PSO). Modeling the adsorption of noble gas clusters on two-dimensional substrates requires a thorough examination of the energy landscape. The high dimensionality of the problem makes it tricky to employ ab initio methods for such studies, necessitating the use of a metaheuristic global optimization technique such as PSO. We explored the adsorption of 1–30 atoms of Ne, Ar and Kr on α-, β-, γ- and rhombic-GYs to predict the most suitable form of GY for the adsorption of each of the gases. Employing the dispersion-corrected density functional theory (DFT-D) data for the adsorption of single gas atoms as the reference data, we parametrized two empirical pairwise potentials, namely, Lennard-Jones (LJ) and improved Lennard-Jones (ILJ) potentials. We then analyzed the growth pattern as well as the energetics of adsorption using the parametrized potentials, in combination with the PSO technique, which enabled us to predict the best possible membrane for the adsorption of the noble gases: α-GY for Ne and γ-GY for Ar and Kr. The accuracy of our modeling approach is further validated against DFT-D computations thereby establishing that PSO, when combined with the ILJ potential, can serve as a computationally feasible approach for modeling gas adsorption on GYs.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用群集智能探索石墨炔吸附惰性气体的能量图谱
在一原子厚的膜上进行气体吸附因其出色的能效而成为一种不断发展的分离应用技术。在此,我们利用群集智能技术,即粒子群优化(PSO),研究了惰性气体 Ne、Ar 和 Kr 在石墨炔(GYs)上的吸附,石墨炔是一类新型的一原子厚碳膜。建立惰性气体团簇在二维基底上的吸附模型需要对能量图谱进行深入研究。该问题的高维度使得采用自证方法进行此类研究非常棘手,因此有必要使用元启发式全局优化技术(如 PSO)。我们探索了 1-30 个 Ne、Ar 和 Kr 原子在 α-、β-、γ- 和菱形 GY 上的吸附情况,以预测最适合吸附每种气体的 GY 形式。我们以单个气体原子吸附的色散校正密度泛函理论(DFT-D)数据为参考数据,参数化了两种经验对偶电势,即伦纳德-琼斯(LJ)电势和改进的伦纳德-琼斯(ILJ)电势。然后,我们使用参数化的电势并结合 PSO 技术分析了吸附的生长模式和能量学,从而预测出了惰性气体的最佳吸附膜:α-GY 用于 Ne,γ-GY 用于 Ar 和 Kr。根据 DFT-D 计算进一步验证了我们建模方法的准确性,从而确定了 PSO 与 ILJ 电位相结合,可以作为一种计算上可行的方法来模拟 GYs 上的气体吸附。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Artificial intelligence chemistry
Artificial intelligence chemistry Chemistry (General)
自引率
0.00%
发文量
0
审稿时长
21 days
期刊最新文献
Molecular similarity: Theory, applications, and perspectives Large-language models: The game-changers for materials science research Conf-GEM: A geometric information-assisted direct conformation generation model Top 20 influential AI-based technologies in chemistry User-friendly and industry-integrated AI for medicinal chemists and pharmaceuticals
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1