{"title":"Deep Knowledge Tracing Incorporating a Hypernetwork With Independent Student and Item Networks","authors":"Emiko Tsutsumi;Yiming Guo;Ryo Kinoshita;Maomi Ueno","doi":"10.1109/TLT.2023.3346671","DOIUrl":null,"url":null,"abstract":"Knowledge tracing (KT), the task of tracking the knowledge state of a student over time, has been assessed actively by artificial intelligence researchers. Recent reports have described that Deep-IRT, which combines item response theory (IRT) with a deep learning method, provides superior performance. It can express the abilities of each student and the difficulty of each item such as IRT. Nevertheless, its interpretability is inadequate compared to that of IRT because the ability parameter depends on each item. Deep-IRT implicitly assumes that items with the same skills are equivalent, which does not hold when item difficulties for the same skills differ greatly. For identical skills, items that are not equivalent hinder the interpretation of a student's ability estimate. To overcome those difficulties, this study proposes a novel Deep-IRT that models a student response to an item using two independent networks: 1) a student network and 2) an item network. The proposed Deep-IRT method learns student parameters and item parameters independently to avoid impairing the predictive accuracy. Moreover, we propose a novel hypernetwork architecture for the proposed Deep-IRT to balance both the current and the past data in the latent variable storing student's knowledge states. Results of experiments with six benchmark datasets demonstrate that the proposed method improves the prediction accuracy by about 2.0%, on average. In addition, experiments for the simulation dataset demonstrated that the proposed method provides a stronger correlation with true parameters than the earlier Deep-IRT method does at the \n<inline-formula><tex-math>$p< 0.5$</tex-math></inline-formula>\n significance level.","PeriodicalId":49191,"journal":{"name":"IEEE Transactions on Learning Technologies","volume":"17 ","pages":"951-965"},"PeriodicalIF":2.9000,"publicationDate":"2023-12-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10373110","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Learning Technologies","FirstCategoryId":"95","ListUrlMain":"https://ieeexplore.ieee.org/document/10373110/","RegionNum":3,"RegionCategory":"教育学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
Knowledge tracing (KT), the task of tracking the knowledge state of a student over time, has been assessed actively by artificial intelligence researchers. Recent reports have described that Deep-IRT, which combines item response theory (IRT) with a deep learning method, provides superior performance. It can express the abilities of each student and the difficulty of each item such as IRT. Nevertheless, its interpretability is inadequate compared to that of IRT because the ability parameter depends on each item. Deep-IRT implicitly assumes that items with the same skills are equivalent, which does not hold when item difficulties for the same skills differ greatly. For identical skills, items that are not equivalent hinder the interpretation of a student's ability estimate. To overcome those difficulties, this study proposes a novel Deep-IRT that models a student response to an item using two independent networks: 1) a student network and 2) an item network. The proposed Deep-IRT method learns student parameters and item parameters independently to avoid impairing the predictive accuracy. Moreover, we propose a novel hypernetwork architecture for the proposed Deep-IRT to balance both the current and the past data in the latent variable storing student's knowledge states. Results of experiments with six benchmark datasets demonstrate that the proposed method improves the prediction accuracy by about 2.0%, on average. In addition, experiments for the simulation dataset demonstrated that the proposed method provides a stronger correlation with true parameters than the earlier Deep-IRT method does at the
$p< 0.5$
significance level.
期刊介绍:
The IEEE Transactions on Learning Technologies covers all advances in learning technologies and their applications, including but not limited to the following topics: innovative online learning systems; intelligent tutors; educational games; simulation systems for education and training; collaborative learning tools; learning with mobile devices; wearable devices and interfaces for learning; personalized and adaptive learning systems; tools for formative and summative assessment; tools for learning analytics and educational data mining; ontologies for learning systems; standards and web services that support learning; authoring tools for learning materials; computer support for peer tutoring; learning via computer-mediated inquiry, field, and lab work; social learning techniques; social networks and infrastructures for learning and knowledge sharing; and creation and management of learning objects.