Investigating the Legality of Bias Mitigation Methods in the United Kingdom

IF 2.1 4区 工程技术 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC IEEE Technology and Society Magazine Pub Date : 2023-12-01 DOI:10.1109/MTS.2023.3341465
Mackenzie Jorgensen;Madeleine Waller;Oana Cocarascu;Natalia Criado;Odinaldo Rodrigues;Jose Such;Elizabeth Black
{"title":"Investigating the Legality of Bias Mitigation Methods in the United Kingdom","authors":"Mackenzie Jorgensen;Madeleine Waller;Oana Cocarascu;Natalia Criado;Odinaldo Rodrigues;Jose Such;Elizabeth Black","doi":"10.1109/MTS.2023.3341465","DOIUrl":null,"url":null,"abstract":"Algorithmic Decision-Making Systems (ADMS) \n<xref>1</xref>\n fairness issues have been well highlighted over the past decade \n<xref>[1]</xref>\n, including some facial recognition systems struggling to identify people of color \n<xref>[2]</xref>\n. In 2021, Uber drivers filed a claim with the U.K. ’s employment tribunal for unfair dismissal resulting from automated facial recognition technology by Microsoft \n<xref>[3]</xref>\n. \n<italic>Bias mitigation methods</i>\n have been developed to reduce discrimination from ADMS. These typically operationalize fairness notions as \n<italic>fairness metrics</i>\n to minimize discrimination \n<xref>[4]</xref>\n. We refer to ADMS to which bias mitigation methods have been applied as “mitigated ADMS” or, in the singular, a “mitigated system.”","PeriodicalId":55016,"journal":{"name":"IEEE Technology and Society Magazine","volume":"42 4","pages":"87-94"},"PeriodicalIF":2.1000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Technology and Society Magazine","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10410096/","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Algorithmic Decision-Making Systems (ADMS) 1 fairness issues have been well highlighted over the past decade [1] , including some facial recognition systems struggling to identify people of color [2] . In 2021, Uber drivers filed a claim with the U.K. ’s employment tribunal for unfair dismissal resulting from automated facial recognition technology by Microsoft [3] . Bias mitigation methods have been developed to reduce discrimination from ADMS. These typically operationalize fairness notions as fairness metrics to minimize discrimination [4] . We refer to ADMS to which bias mitigation methods have been applied as “mitigated ADMS” or, in the singular, a “mitigated system.”
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
调查英国减少偏见方法的合法性
过去十年来,算法决策系统(ADMS)1 的公平性问题一直备受关注[1],其中包括一些面部识别系统在识别有色人种方面的困难[2]。2021 年,Uber 司机向英国就业法庭提起诉讼,指控微软公司的自动人脸识别技术造成了不公平解雇[3]。为了减少 ADMS 带来的歧视,人们开发了减少偏见的方法。这些方法通常将公平概念作为公平指标来操作,以尽量减少歧视[4]。我们将采用了偏差缓解方法的 ADMS 称为 "缓解 ADMS",或单称 "缓解系统"。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEE Technology and Society Magazine
IEEE Technology and Society Magazine 工程技术-工程:电子与电气
CiteScore
3.00
自引率
13.60%
发文量
72
审稿时长
>12 weeks
期刊介绍: IEEE Technology and Society Magazine invites feature articles (refereed), special articles, and commentaries on topics within the scope of the IEEE Society on Social Implications of Technology, in the broad areas of social implications of electrotechnology, history of electrotechnology, and engineering ethics.
期刊最新文献
Table of Contents Front Cover Call for Papers: IEEE ETHICS-2025 The Science of Life and Death in Frankenstein—Sharon Ruston (Oxford, U.K.: Bodleian Library, 2021, 152 pp.) IEEE Technology and Society Magazine Publication Information
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1