Broadening horizons: ferroptosis as a new target for traumatic brain injury

IF 6.3 1区 医学 Q1 DERMATOLOGY Burns & Trauma Pub Date : 2024-01-21 DOI:10.1093/burnst/tkad051
Ziqing Wei, Haihan Yu, Huijuan Zhao, Mingze Wei, Han Xing, Jinyan Pei, Yang Yang, Kaidi Ren
{"title":"Broadening horizons: ferroptosis as a new target for traumatic brain injury","authors":"Ziqing Wei, Haihan Yu, Huijuan Zhao, Mingze Wei, Han Xing, Jinyan Pei, Yang Yang, Kaidi Ren","doi":"10.1093/burnst/tkad051","DOIUrl":null,"url":null,"abstract":"Traumatic brain injury (TBI) is a leading cause of death and disability worldwide, with ~50 million people experiencing TBI each year. Ferroptosis, a form of regulated cell death triggered by iron ion-catalyzed and reactive oxygen species-induced lipid peroxidation, has been identified as a potential contributor to traumatic central nervous system conditions, suggesting its involvement in the pathogenesis of TBI. Alterations in iron metabolism play a crucial role in secondary injury following TBI. This study aimed to explore the role of ferroptosis in TBI, focusing on iron metabolism disorders, lipid metabolism disorders and the regulatory axis of system Xc−/glutathione/glutathione peroxidase 4 in TBI. Additionally, we examined the involvement of ferroptosis in the chronic TBI stage. Based on these findings, we discuss potential therapeutic interventions targeting ferroptosis after TBI. In conclusion, this review provides novel insights into the pathology of TBI and proposes potential therapeutic targets.","PeriodicalId":9553,"journal":{"name":"Burns & Trauma","volume":"7 1","pages":""},"PeriodicalIF":6.3000,"publicationDate":"2024-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Burns & Trauma","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/burnst/tkad051","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"DERMATOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Traumatic brain injury (TBI) is a leading cause of death and disability worldwide, with ~50 million people experiencing TBI each year. Ferroptosis, a form of regulated cell death triggered by iron ion-catalyzed and reactive oxygen species-induced lipid peroxidation, has been identified as a potential contributor to traumatic central nervous system conditions, suggesting its involvement in the pathogenesis of TBI. Alterations in iron metabolism play a crucial role in secondary injury following TBI. This study aimed to explore the role of ferroptosis in TBI, focusing on iron metabolism disorders, lipid metabolism disorders and the regulatory axis of system Xc−/glutathione/glutathione peroxidase 4 in TBI. Additionally, we examined the involvement of ferroptosis in the chronic TBI stage. Based on these findings, we discuss potential therapeutic interventions targeting ferroptosis after TBI. In conclusion, this review provides novel insights into the pathology of TBI and proposes potential therapeutic targets.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
拓宽视野:作为脑外伤治疗新靶点的铁蛋白沉积症
创伤性脑损伤(TBI)是导致全球死亡和残疾的主要原因,每年约有 5000 万人受到创伤性脑损伤。铁变态反应是一种由铁离子催化和活性氧诱导的脂质过氧化反应引发的调节性细胞死亡,已被确认为创伤性中枢神经系统疾病的潜在诱因,这表明铁变态反应与创伤性脑损伤的发病机制有关。铁代谢的改变在创伤性脑损伤后的继发性损伤中起着至关重要的作用。本研究旨在探讨铁变态反应在创伤性脑损伤中的作用,重点是铁代谢紊乱、脂代谢紊乱和创伤性脑损伤中 Xc- 系统/谷胱甘肽/谷胱甘肽过氧化物酶 4 的调节轴。此外,我们还研究了慢性创伤性脑损伤阶段的铁变态反应。基于这些发现,我们讨论了针对创伤性脑损伤后铁蛋白沉积的潜在治疗干预措施。总之,本综述提供了对创伤性脑损伤病理的新见解,并提出了潜在的治疗目标。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Burns & Trauma
Burns & Trauma 医学-皮肤病学
CiteScore
8.40
自引率
9.40%
发文量
186
审稿时长
6 weeks
期刊介绍: The first open access journal in the field of burns and trauma injury in the Asia-Pacific region, Burns & Trauma publishes the latest developments in basic, clinical and translational research in the field. With a special focus on prevention, clinical treatment and basic research, the journal welcomes submissions in various aspects of biomaterials, tissue engineering, stem cells, critical care, immunobiology, skin transplantation, and the prevention and regeneration of burns and trauma injuries. With an expert Editorial Board and a team of dedicated scientific editors, the journal enjoys a large readership and is supported by Southwest Hospital, which covers authors'' article processing charges.
期刊最新文献
SportSync health: revolutionizing patient care in sports medicine through integrated follow-up technologies. Dexmedetomidine regulates exosomal miR-29b-3p from macrophages and alleviates septic myocardial injury by promoting autophagy in cardiomyocytes via targeting glycogen synthase kinase 3β. Polylactic acid-based dressing with oxygen generation and enzyme-like activity for accelerating both light-driven biofilm elimination and wound healing Single-cell sequencing technology in skin wound healing Consensus on the prevention and repair of titanium mesh exposed wound after cranioplasty (2024 edition).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1