Lei Xie , Dezhi Zuo , Yushen Ma , Xiang Zhu , Bin Xu , Fei He , Qingqing Pang , Longmian Wang , Fuquan Peng , Lixiao Ni , Wenjuan Jiang , Haibo Dong
{"title":"The bacterial influencing mechanisms of salinity fluctuations in a brackish-water lake on the dissolved organic matter characteristics of pore water","authors":"Lei Xie , Dezhi Zuo , Yushen Ma , Xiang Zhu , Bin Xu , Fei He , Qingqing Pang , Longmian Wang , Fuquan Peng , Lixiao Ni , Wenjuan Jiang , Haibo Dong","doi":"10.1016/j.orggeochem.2024.104744","DOIUrl":null,"url":null,"abstract":"<div><p>The dissolved organic matter (DOM) components in lake water have been widely studied; however, few previous studies have considered the growth of <em>Phragmites australis</em> in brackish lakes. It has not been well understood how salinity variations influence the DOM compositions in pore water and its bacterial mechanisms in lakes with <em>Phragmites australis</em>. This experiment included three salinity groups (1,200 mg/L, 3,600 mg/L, and 6,000 mg/L) to study the interactions between bacteria and DOM in pore water under a salinity gradient. The results showed that the maximum fluorescence intensity (F<sub>max</sub>) of DOM measured by excitation-emission fluorescence spectroscopy decreased with increasing salinity. Higher salinity reduced the F<sub>max</sub> of protein-like substances and resulted in DOM becoming more aromatic. Salinity affected DOM composition due to the responses of functional bacterial communities. <em>Thiobacillus</em> was salt-tolerant and dominated in the sediments, and its relative abundance was negatively correlated with the F<sub>max</sub> of protein-like components. The relative abundance of <em>Flavobacterium</em> showed a positive correlation with salinity and a negative correlation with the F<sub>max</sub> of the fulvic acid-like component. <em>Pseudomonas</em>, <em>Brevundimonas</em>, and <em>Polaromonas</em> were negatively correlated with salinity and the F<sub>max</sub> of the fulvic acid-like component, while being positively correlated with the F<sub>max</sub> of tyrosine-like and aromatic protein substances. Higher salinity inhibited the metabolism gene modules of tryptophan and tyrosine. The results of this study may offer a novel perspective on comprehending the biochemical cycling of fluorescent DOM, encompassing tryptophan-like, tyrosine-like, and fulvic acid-like components in brackish lakes with fluctuating salinity.</p></div>","PeriodicalId":400,"journal":{"name":"Organic Geochemistry","volume":"189 ","pages":"Article 104744"},"PeriodicalIF":2.6000,"publicationDate":"2024-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Organic Geochemistry","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0146638024000093","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
The dissolved organic matter (DOM) components in lake water have been widely studied; however, few previous studies have considered the growth of Phragmites australis in brackish lakes. It has not been well understood how salinity variations influence the DOM compositions in pore water and its bacterial mechanisms in lakes with Phragmites australis. This experiment included three salinity groups (1,200 mg/L, 3,600 mg/L, and 6,000 mg/L) to study the interactions between bacteria and DOM in pore water under a salinity gradient. The results showed that the maximum fluorescence intensity (Fmax) of DOM measured by excitation-emission fluorescence spectroscopy decreased with increasing salinity. Higher salinity reduced the Fmax of protein-like substances and resulted in DOM becoming more aromatic. Salinity affected DOM composition due to the responses of functional bacterial communities. Thiobacillus was salt-tolerant and dominated in the sediments, and its relative abundance was negatively correlated with the Fmax of protein-like components. The relative abundance of Flavobacterium showed a positive correlation with salinity and a negative correlation with the Fmax of the fulvic acid-like component. Pseudomonas, Brevundimonas, and Polaromonas were negatively correlated with salinity and the Fmax of the fulvic acid-like component, while being positively correlated with the Fmax of tyrosine-like and aromatic protein substances. Higher salinity inhibited the metabolism gene modules of tryptophan and tyrosine. The results of this study may offer a novel perspective on comprehending the biochemical cycling of fluorescent DOM, encompassing tryptophan-like, tyrosine-like, and fulvic acid-like components in brackish lakes with fluctuating salinity.
期刊介绍:
Organic Geochemistry serves as the only dedicated medium for the publication of peer-reviewed research on all phases of geochemistry in which organic compounds play a major role. The Editors welcome contributions covering a wide spectrum of subjects in the geosciences broadly based on organic chemistry (including molecular and isotopic geochemistry), and involving geology, biogeochemistry, environmental geochemistry, chemical oceanography and hydrology.
The scope of the journal includes research involving petroleum (including natural gas), coal, organic matter in the aqueous environment and recent sediments, organic-rich rocks and soils and the role of organics in the geochemical cycling of the elements.
Sedimentological, paleontological and organic petrographic studies will also be considered for publication, provided that they are geochemically oriented. Papers cover the full range of research activities in organic geochemistry, and include comprehensive review articles, technical communications, discussion/reply correspondence and short technical notes. Peer-reviews organised through three Chief Editors and a staff of Associate Editors, are conducted by well known, respected scientists from academia, government and industry. The journal also publishes reviews of books, announcements of important conferences and meetings and other matters of direct interest to the organic geochemical community.