首页 > 最新文献

Organic Geochemistry最新文献

英文 中文
Unraveling the origin and charge of Halahatang oils, Tarim Basin
IF 2.6 3区 地球科学 Q2 GEOCHEMISTRY & GEOPHYSICS Pub Date : 2025-03-16 DOI: 10.1016/j.orggeochem.2025.104962
Peng Sun , Chunfang Cai , Daowei Wang , Yu Qi , Chenlu Xu , Paul F. Greenwood
Uncertainty about the source of the oils from the Halahatang region of the Tabei Uplift, Tarim Basin (NW China) presents an ongoing challenge to exploration. Previous analyses of several Halahatang oils showed isotopic (δ13C < –32 ‰) and aliphatic hydrocarbon distributions (e.g., V-shaped C27-C29 steranes) more typical of regional Ordovician source rocks than the Cambrian rocks that are the predominant source of petroleum of the Tarim Basin, supporting prospects for a second major regional oil source. In pursuit of a more definitive source assignment of Halahatang oils and further insight into their depositional environment and charge history, a detailed molecular appraisal of the aromatic hydrocarbon composition of 27 marine oils and complementary stable sulfur and carbon isotopic analyses were conducted. The oils were from different Halahatang wells resolved into three separate block groups, with variations to the extent molecular and isotopic data was influenced by secondary alteration (i.e., thermal maturity, biodegradation and, possibly, minor thermochemical sulfate reduction) evident among the groups. The major aromatic products of all oils were alkylated naphthalenes, phenanthrenes, dibenzothiophenes and trace levels of thiadiamondoids were detected in a few Group II and III oils. Aryl isoprenoids, typical biomarkers of an euxinic depositional environment, were also conspicuous in lower maturity Group I and II oils (Rc < 0.9 %), but absent in higher maturity oils (Rc up to 1.02 %). Molecular evidence of severe biodegradation (e.g., unresolved complex matter, 25-norterpenoids) was evident in some Group I oils, although some of these also showed coincident non-biodegradation molecular features (e.g., low MW n-alkanes) implying a mixing of biodegraded and non-biodegraded charges. The δ34S values of the bulk oil and their dibenzothiophene and alkyldibenzothiophene products were generally in the range +17 to +23 ‰,although some oils impacted by biodegradation showed slightly heavier δ34S values (>+26 ‰). The Group II oils were not significantly impacted by secondary processes and their aromatic signature (e.g., aryl isoprenoids), δ34S data and whole oil δ13C values were closely correlated with regional Lower Cambrian source rocks and are atypical of Upper Ordovician source rocks. These results identify the Halahatang oils as a further representation of Lower Cambrian-derived oils of the Tabei Uplift.
{"title":"Unraveling the origin and charge of Halahatang oils, Tarim Basin","authors":"Peng Sun ,&nbsp;Chunfang Cai ,&nbsp;Daowei Wang ,&nbsp;Yu Qi ,&nbsp;Chenlu Xu ,&nbsp;Paul F. Greenwood","doi":"10.1016/j.orggeochem.2025.104962","DOIUrl":"10.1016/j.orggeochem.2025.104962","url":null,"abstract":"<div><div>Uncertainty about the source of the oils from the Halahatang region of the Tabei Uplift, Tarim Basin (NW China) presents an ongoing challenge to exploration. Previous analyses of several Halahatang oils showed isotopic (δ<sup>13</sup>C &lt; –32 ‰) and aliphatic hydrocarbon distributions (e.g., V-shaped C<sub>27</sub>-C<sub>29</sub> steranes) more typical of regional Ordovician source rocks than the Cambrian rocks that are the predominant source of petroleum of the Tarim Basin, supporting prospects for a second major regional oil source. In pursuit of a more definitive source assignment of Halahatang oils and further insight into their depositional environment and charge history, a detailed molecular appraisal of the aromatic hydrocarbon composition of 27 marine oils and complementary stable sulfur and carbon isotopic analyses were conducted. The oils were from different Halahatang wells resolved into three separate block groups, with variations to the extent molecular and isotopic data was influenced by secondary alteration (i.e., thermal maturity, biodegradation and, possibly, minor thermochemical sulfate reduction) evident among the groups. The major aromatic products of all oils were alkylated naphthalenes, phenanthrenes, dibenzothiophenes and trace levels of thiadiamondoids were detected in a few Group II and III oils. Aryl isoprenoids, typical biomarkers of an euxinic depositional environment, were also conspicuous in lower maturity Group I and II oils (Rc &lt; 0.9 %), but absent in higher maturity oils (Rc up to 1.02 %). Molecular evidence of severe biodegradation (e.g., unresolved complex matter, 25-norterpenoids) was evident in some Group I oils, although some of these also showed coincident non-biodegradation molecular features (e.g., low MW <em>n</em>-alkanes) implying a mixing of biodegraded and non-biodegraded charges. The δ<sup>34</sup>S values of the bulk oil and their dibenzothiophene and alkyldibenzothiophene products were generally in the range +17 to +23 ‰,although some oils impacted by biodegradation showed slightly heavier δ<sup>34</sup>S values (&gt;+26 ‰). The Group II oils were not significantly impacted by secondary processes and their aromatic signature (e.g., aryl isoprenoids), δ<sup>34</sup>S data and whole oil δ<sup>13</sup>C values were closely correlated with regional Lower Cambrian source rocks and are atypical of Upper Ordovician source rocks. These results identify the Halahatang oils as a further representation of Lower Cambrian-derived oils of the Tabei Uplift.</div></div>","PeriodicalId":400,"journal":{"name":"Organic Geochemistry","volume":"204 ","pages":"Article 104962"},"PeriodicalIF":2.6,"publicationDate":"2025-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143631874","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Clumped 13C–13C isotopes of ethane from laboratory pyrolysis of kerogen: Implications for intramolecular 13C distributions
IF 2.6 3区 地球科学 Q2 GEOCHEMISTRY & GEOPHYSICS Pub Date : 2025-03-15 DOI: 10.1016/j.orggeochem.2025.104951
Koudai Taguchi , Yuichiro Ueno , Alexis Gilbert , Xiaoqiang Li , Juske Horita
The clumped isotope geochemistry of 13C–13C bonding offers a valuable tool for distinguishing the formation processes of ethane (C2H6) and its thermogenic and abiotic origins. Thermogenic ethane is characterized by isotope distributions that are nearly in thermodynamic equilibrium, whereas abiotic ethane is governed by kinetic isotope effects during C–C bond synthesis. 13C–13C ordering in thermogenic ethane varies with the source organic material, but limited studies on ethane clumped isotopes from natural gases restrict our understanding of these signatures. To address this, we performed pyrolysis experiments at 310–470 °C on various immature kerogens from the Eocene Green River Formation (Type I), Upper Devonian–Lower Mississippian Woodford Shale (Type II), and Pennsylvanian Springfield Coal Member (Type III). The ethane-clumped isotope compositions aligned with those of natural gas samples and varied based on the starting kerogen’s isotope composition. We propose a thermogenic model that describes isotopic systematics, including 13C–13C variations in the pyrolysis product ethane, driven by (i) combinatorial isotope effect during C–C bond breaking and (ii) intramolecular isotopic heterogeneity in the starting kerogen. Isotopic and clumped isotope variations suggest a zigzag isotopic pattern in kerogen alkyl chains, similar to that seen in biological fatty acids. We could extend the model to position-specific (PS) isotope signatures in propane, showing that intramolecular isotopic heterogeneity in kerogens also affect PS isotopes, alongside structural heterogeneity, such as isoprenoid versus alkyl. Overall, our findings demonstrate that 13C–13C clumping is a ubiquitous signature for thermogenic ethane, with variations reflecting isotopic information of the original organic matter.
{"title":"Clumped 13C–13C isotopes of ethane from laboratory pyrolysis of kerogen: Implications for intramolecular 13C distributions","authors":"Koudai Taguchi ,&nbsp;Yuichiro Ueno ,&nbsp;Alexis Gilbert ,&nbsp;Xiaoqiang Li ,&nbsp;Juske Horita","doi":"10.1016/j.orggeochem.2025.104951","DOIUrl":"10.1016/j.orggeochem.2025.104951","url":null,"abstract":"<div><div>The clumped isotope geochemistry of <sup>13</sup>C–<sup>13</sup>C bonding offers a valuable tool for distinguishing the formation processes of ethane (C<sub>2</sub>H<sub>6</sub>) and its thermogenic and abiotic origins. Thermogenic ethane is characterized by isotope distributions that are nearly in thermodynamic equilibrium, whereas abiotic ethane is governed by kinetic isotope effects during C–C bond synthesis. <sup>13</sup>C–<sup>13</sup>C ordering in thermogenic ethane varies with the source organic material, but limited studies on ethane clumped isotopes from natural gases restrict our understanding of these signatures. To address this, we performed pyrolysis experiments at 310–470 °C on various immature kerogens from the Eocene Green River Formation (Type I), Upper Devonian–Lower Mississippian Woodford Shale (Type II), and Pennsylvanian Springfield Coal Member (Type III). The ethane-clumped isotope compositions aligned with those of natural gas samples and varied based on the starting kerogen’s isotope composition. We propose a thermogenic model that describes isotopic systematics, including <sup>13</sup>C–<sup>13</sup>C variations in the pyrolysis product ethane, driven by (i) combinatorial isotope effect during C–C bond breaking and (ii) intramolecular isotopic heterogeneity in the starting kerogen. Isotopic and clumped isotope variations suggest a zigzag isotopic pattern in kerogen alkyl chains, similar to that seen in biological fatty acids. We could extend the model to position-specific (PS) isotope signatures in propane, showing that intramolecular isotopic heterogeneity in kerogens also affect PS isotopes, alongside structural heterogeneity, such as isoprenoid versus alkyl. Overall, our findings demonstrate that <sup>13</sup>C–<sup>13</sup>C clumping is a ubiquitous signature for thermogenic ethane, with variations reflecting isotopic information of the original organic matter.</div></div>","PeriodicalId":400,"journal":{"name":"Organic Geochemistry","volume":"204 ","pages":"Article 104951"},"PeriodicalIF":2.6,"publicationDate":"2025-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143631872","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Sedimentary geochemical records of the palaeovegetation and palaeoclimate evolution in the Pinghu Formation, Western Slope Belt, Xihu Sag, East China Sea Basin
IF 2.6 3区 地球科学 Q2 GEOCHEMISTRY & GEOPHYSICS Pub Date : 2025-03-09 DOI: 10.1016/j.orggeochem.2025.104973
Yanan Wang , Lin Wei , Xiong Cheng , Hui Diao , Wenjun Li , Dujie Hou , Jiansheng Li
The sedimentary development of source rocks in marine-continental transitional facies is controlled mainly by the synergistic evolution of palaeovegetation and palaeoclimate. A set of marine-continental transitional coal seams in Xihu Sag of the East China Sea Basin were discovered at the end of the last century, whose lithology is mainly fine-grained sedimentary, with significant non-homogeneity and complex developmental control factors. Although systematic geochemical evaluations and hydrocarbon potential studies have been carried out on the source rocks in the Xihu Sag, few studies have focused on the fine-grained characterization of the palaeovegetation and palaeoclimate evolution during the depositional period. In this study, the palaeovegetation and palaeoclimate of the Pinghu Formation in Xihu Sag have been reconstructed based on biomarkers, pollen abundance, and trace elements. The organic matter of the Pinghu Formation is mainly input from terrigenous higher plants. The biomarkers reveal that gymnosperms gradually increase from the early to late stages of the Pinghu Formation, whereas pteridophytes exhibit the opposite trend. The contribution of gymnosperms to organic matter in the Wuyunting area is higher than in the Pinghu area. Furthermore, the number of temperate deciduous broad-leaved angiosperms (Alnipollenites, Ulmipollenites, Momipites, and Juglanspollenites) and mountain coniferous gymnosperms (Pinuspollenites) increased from the early to late stages of the Pinghu Formation, while the abundance of tropical/subtropical plants (Quercoidites, Taxodiaceaepollenites, and Salixipollenites) decreased. The vegetation succession is characterized by gradually transforming from tall gymnosperms to low-growing pteridophytes from the northern Wuyunting area to the southern Pinghu area. In conclusion, palynological data (including pteridophytes, angiosperms, and gymnosperms) and trace element ratios indicate that from the early to late stages of the Pinghu Formation, the palaeoclimate gradually became colder, with humidity and water depth decreasing.
{"title":"Sedimentary geochemical records of the palaeovegetation and palaeoclimate evolution in the Pinghu Formation, Western Slope Belt, Xihu Sag, East China Sea Basin","authors":"Yanan Wang ,&nbsp;Lin Wei ,&nbsp;Xiong Cheng ,&nbsp;Hui Diao ,&nbsp;Wenjun Li ,&nbsp;Dujie Hou ,&nbsp;Jiansheng Li","doi":"10.1016/j.orggeochem.2025.104973","DOIUrl":"10.1016/j.orggeochem.2025.104973","url":null,"abstract":"<div><div>The sedimentary development of source rocks in marine-continental transitional facies is controlled mainly by the synergistic evolution of palaeovegetation and palaeoclimate. A set of marine-continental transitional coal seams in Xihu Sag of the East China Sea Basin were discovered at the end of the last century, whose lithology is mainly fine-grained sedimentary, with significant non-homogeneity and complex developmental control factors. Although systematic geochemical evaluations and hydrocarbon potential studies have been carried out on the source rocks in the Xihu Sag, few studies have focused on the fine-grained characterization of the palaeovegetation and palaeoclimate evolution during the depositional period. In this study, the palaeovegetation and palaeoclimate of the Pinghu Formation in Xihu Sag have been reconstructed based on biomarkers, pollen abundance, and trace elements. The organic matter of the Pinghu Formation is mainly input from terrigenous higher plants. The biomarkers reveal that gymnosperms gradually increase from the early to late stages of the Pinghu Formation, whereas pteridophytes exhibit the opposite trend. The contribution of gymnosperms to organic matter in the Wuyunting area is higher than in the Pinghu area. Furthermore, the number of temperate deciduous broad-leaved angiosperms (<em>Alnipollenites</em>, <em>Ulmipollenites</em>, <em>Momipites</em>, and <em>Juglanspollenites</em>) and mountain coniferous gymnosperms (<em>Pinuspollenites</em>) increased from the early to late stages of the Pinghu Formation, while the abundance of tropical/subtropical plants (<em>Quercoidites</em>, <em>Taxodiaceaepollenites</em>, and <em>Salixipollenites</em>) decreased. The vegetation succession<!--> <!-->is characterized by gradually transforming from tall gymnosperms to low-growing pteridophytes from the northern Wuyunting area to the southern Pinghu area. In conclusion, palynological data (including pteridophytes, angiosperms, and gymnosperms) and trace element ratios indicate that from the early to late stages of the Pinghu Formation, the palaeoclimate gradually became colder, with humidity and water depth decreasing.</div></div>","PeriodicalId":400,"journal":{"name":"Organic Geochemistry","volume":"203 ","pages":"Article 104973"},"PeriodicalIF":2.6,"publicationDate":"2025-03-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143578858","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Preservation of archaeal core lipids in siliceous hot spring deposits: An experimental study 硅质温泉沉积中古生物核心脂质的保存:实验研究
IF 2.6 3区 地球科学 Q2 GEOCHEMISTRY & GEOPHYSICS Pub Date : 2025-03-04 DOI: 10.1016/j.orggeochem.2025.104974
L. Weimann , M. Reinhardt , C. Ostertag-Henning , J.-P. Duda , V. Thiel
Siliceous hot spring systems have been present on our planet since at least 3.5 Ga, often hosting diverse communities of Archaea. Isoprenoid core lipids are important biomarkers for these microorganisms, but these lipids have only been reported from modern and subrecent siliceous sinter settings, perhaps indicating a bias against their long-term preservation in such environments. We conducted closed-system maturation experiments with the archaeal core lipids archaeol and isoprenoid glycerol dialkyl glycerol tetraethers (isoGDGTs) at 250 °C and 300 bar for 14 days. Compounds were heated with artificial sea water, with and without silica, as single compounds, and as part of a lipid mixture from a microbial mat. The products were analyzed using gas chromatography-mass spectrometry, scanning electron microscopy, and X-ray diffraction. This allowed to assess the preservation potential of these biomarkers during simulated siliceous sinter formation and subsequent diagenesis. Amorphous silica gel transformed into small microspheres (∼10 µm) when heated with single organic compounds, but formed more irregularly shaped rounded grains when heated with the lipid mixture. The presence of silica led to an enhanced degradation of archaeol, most likely caused by hydroxyl radicals deriving from silica-fluid interactions. IsoGDGTs, in contrast, were less affected by silica and showed an enhanced stability when heated as part of the lipid mixture. The results indicate that (i) the silica matrix, (ii) the molecular structure, and (iii) the presence of other organic compounds play a critical role for the preservation of archaeal core lipids in siliceous hot spring systems.
{"title":"Preservation of archaeal core lipids in siliceous hot spring deposits: An experimental study","authors":"L. Weimann ,&nbsp;M. Reinhardt ,&nbsp;C. Ostertag-Henning ,&nbsp;J.-P. Duda ,&nbsp;V. Thiel","doi":"10.1016/j.orggeochem.2025.104974","DOIUrl":"10.1016/j.orggeochem.2025.104974","url":null,"abstract":"<div><div>Siliceous hot spring systems have been present on our planet since at least 3.5 Ga, often hosting diverse communities of Archaea. Isoprenoid core lipids are important biomarkers for these microorganisms, but these lipids have only been reported from modern and subrecent siliceous sinter settings, perhaps indicating a bias against their long-term preservation in such environments. We conducted closed-system maturation experiments with the archaeal core lipids archaeol and isoprenoid glycerol dialkyl glycerol tetraethers (isoGDGTs) at 250 °C and 300 bar for 14 days. Compounds were heated with artificial sea water, with and without silica, as single compounds, and as part of a lipid mixture from a microbial mat. The products were analyzed using gas chromatography-mass spectrometry, scanning electron microscopy, and X-ray diffraction. This allowed to assess the preservation potential of these biomarkers during simulated siliceous sinter formation and subsequent diagenesis. Amorphous silica gel transformed into small microspheres (∼10 µm) when heated with single organic compounds, but formed more irregularly shaped rounded grains when heated with the lipid mixture. The presence of silica led to an enhanced degradation of archaeol, most likely caused by hydroxyl radicals deriving from silica-fluid interactions. IsoGDGTs, in contrast, were less affected by silica and showed an enhanced stability when heated as part of the lipid mixture. The results indicate that (i) the silica matrix, (ii) the molecular structure, and (iii) the presence of other organic compounds play a critical role for the preservation of archaeal core lipids in siliceous hot spring systems.</div></div>","PeriodicalId":400,"journal":{"name":"Organic Geochemistry","volume":"204 ","pages":"Article 104974"},"PeriodicalIF":2.6,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143631873","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Optimized sample cleanup for compound-specific isotope analysis of polycyclic aromatic hydrocarbons in complex environmental samples
IF 2.6 3区 地球科学 Q2 GEOCHEMISTRY & GEOPHYSICS Pub Date : 2025-02-28 DOI: 10.1016/j.orggeochem.2025.104966
Md Samrat Alam , Jason M.E. Ahad , Colin A. Cooke
Compound-specific isotope analysis (CSIA) using gas chromatography – isotope ratio mass spectrometry is a powerful tool to discriminate sources of polycyclic aromatic hydrocarbons (PAHs). However, interferences from co-eluting peaks often prevent accurate isotopic measurements in complex environmental samples. Purification of sample extracts is thus a crucial analytical step. In this study, we report a rapid and effective cleanup method using high-performance liquid chromatography (HPLC) that provides high integrity isolation of PAHs suitable for CSIA. The method reported here was effective at purifying both parent and alkylated PAHs from several highly complex matrices, including river sediments, bitumen, petroleum coke, and wildfire ash. HPLC separation removed much of the interfering aromatic unresolved complex mixture (UCM) and significantly improved chromatography, yielding well-resolved PAH peaks with high intensities and signal-to-noise ratios. Recoveries and purities of target compounds following HPLC separation were 70 ± 13% and 97 ± 5%, respectively. No noticeable differences (± 0.5‰) were observed in the carbon isotope values (δ13C) of standards subjected to extraction and HPLC purification steps, indicating negligible isotopic fractionation associated with the protocol. The δ13C values for individual PAHs in samples were comparable to those previously reported for the same sample types, further demonstrating this method’s high level of accuracy and precision. Additionally, this technique allows for isotopic characterisation of a larger number of 4- to 5-ring PAHs compared to many previous studies due to removal of much of the later-eluting UCM, potentially providing greater insight into source discrimination and understanding of PAH deposition and transformation processes. While the focus of this investigation was on PAHs, this technique could be adapted to other problematic compounds targeted for CSIA.
{"title":"Optimized sample cleanup for compound-specific isotope analysis of polycyclic aromatic hydrocarbons in complex environmental samples","authors":"Md Samrat Alam ,&nbsp;Jason M.E. Ahad ,&nbsp;Colin A. Cooke","doi":"10.1016/j.orggeochem.2025.104966","DOIUrl":"10.1016/j.orggeochem.2025.104966","url":null,"abstract":"<div><div>Compound-specific isotope analysis (CSIA) using gas chromatography – isotope ratio mass spectrometry is a powerful tool to discriminate sources of polycyclic aromatic hydrocarbons (PAHs). However, interferences from co-eluting peaks often prevent accurate isotopic measurements in complex environmental samples. Purification of sample extracts is thus a crucial analytical step. In this study, we report a rapid and effective cleanup method using high-performance liquid chromatography (HPLC) that provides high integrity isolation of PAHs suitable for CSIA. The method reported here was effective at purifying both parent and alkylated PAHs from several highly complex matrices, including river sediments, bitumen, petroleum coke, and wildfire ash. HPLC separation removed much of the interfering aromatic unresolved complex mixture (UCM) and significantly improved chromatography, yielding well-resolved PAH peaks with high intensities and signal-to-noise ratios. Recoveries and purities of target compounds following HPLC separation were 70 ± 13% and 97 ± 5%, respectively. No noticeable differences (± 0.5‰) were observed in the carbon isotope values (δ<sup>13</sup>C) of standards subjected to extraction and HPLC purification steps, indicating negligible isotopic fractionation associated with the protocol. The δ<sup>13</sup>C values for individual PAHs in samples were comparable to those previously reported for the same sample types, further demonstrating this method’s high level of accuracy and precision. Additionally, this technique allows for isotopic characterisation of a larger number of 4- to 5-ring PAHs compared to many previous studies due to removal of much of the later-eluting UCM, potentially providing greater insight into source discrimination and understanding of PAH deposition and transformation processes. While the focus of this investigation was on PAHs, this technique could be adapted to other problematic compounds targeted for CSIA.</div></div>","PeriodicalId":400,"journal":{"name":"Organic Geochemistry","volume":"203 ","pages":"Article 104966"},"PeriodicalIF":2.6,"publicationDate":"2025-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143511397","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Diamondoids, biomarkers, and chemofacies: Uniting insights on hydrocarbon maturation and migration in the Cline Shale, Midland Basin
IF 2.6 3区 地球科学 Q2 GEOCHEMISTRY & GEOPHYSICS Pub Date : 2025-02-26 DOI: 10.1016/j.orggeochem.2025.104953
Maram AlSaif , Ibrahim Atwah , Mauro Becker , J. Michael Moldowan , Alex Zumberge , Franco Marcantonio
Basinal mudrocks within the Wolfcamp Group of the Midland Basin, including the Cline Shale (Wolfcamp-D) interval, have proven to be prolific producers of oil and gas. However, predicting hydrocarbon distribution within the Cline Shale remains challenging due to its complex lithological heterogeneity and geochemical variability. In this study, molecular techniques and chemometrics were applied to address this challenge by: (1) characterizing the chemo-stratigraphically distinct depositional units of the Cline Shale, (2) understanding the role of lithological facies in hydrocarbon distribution, and (3) correlating produced-oil samples with the most productive zones within the Cline Shale.
Results reveal that the Cline Shale is dominated by marine-derived organic matter, with minimal terrigenous input. The sediments, currently in the peak-to-late oil window, exhibit distinct variations in redox conditions, paleoproductivity, and organic matter preservation across the Upper, Middle, and Lower intervals. Biomarkers such as terpanes, hopanes, and steranes highlight these variations. Further analysis using Quantitative Diamondoid Analysis (QDA) indicates notable differences in maturity and hydrocarbon cracking that cannot be explained solely by burial depth (∼300 ft difference). The highly mature oil in the Upper Cline appears to have been generated locally, whereas condensate in the Lower Cline is likely the result of lateral migration from deeper, more mature intervals. Quantitative Extended Diamondoid Analysis (QEDA) supports this by correlating oil samples from a nearby well to extracts from siliceous mudstones in the Upper Cline.
{"title":"Diamondoids, biomarkers, and chemofacies: Uniting insights on hydrocarbon maturation and migration in the Cline Shale, Midland Basin","authors":"Maram AlSaif ,&nbsp;Ibrahim Atwah ,&nbsp;Mauro Becker ,&nbsp;J. Michael Moldowan ,&nbsp;Alex Zumberge ,&nbsp;Franco Marcantonio","doi":"10.1016/j.orggeochem.2025.104953","DOIUrl":"10.1016/j.orggeochem.2025.104953","url":null,"abstract":"<div><div>Basinal mudrocks within the Wolfcamp Group of the Midland Basin, including the Cline Shale (Wolfcamp-D) interval, have proven to be prolific producers of oil and gas. However, predicting hydrocarbon distribution within the Cline Shale remains challenging due to its complex lithological heterogeneity and geochemical variability. In this study, molecular techniques and chemometrics were applied to address this challenge by: (1) characterizing the chemo-stratigraphically distinct depositional units of the Cline Shale, (2) understanding the role of lithological facies in hydrocarbon distribution, and (3) correlating produced-oil samples with the most productive zones within the Cline Shale.</div><div>Results reveal that the Cline Shale is dominated by marine-derived organic matter, with minimal terrigenous input. The sediments, currently in the peak-to-late oil window, exhibit distinct variations in redox conditions, paleoproductivity, and organic matter preservation across the Upper, Middle, and Lower intervals. Biomarkers such as terpanes, hopanes, and steranes highlight these variations. Further analysis using Quantitative Diamondoid Analysis (QDA) indicates notable differences in maturity and hydrocarbon cracking that cannot be explained solely by burial depth (∼300 ft difference). The highly mature oil in the Upper Cline appears to have been generated locally, whereas condensate in the Lower Cline is likely the result of lateral migration from deeper, more mature intervals. Quantitative Extended Diamondoid Analysis (QEDA) supports this by correlating oil samples from a nearby well to extracts from siliceous mudstones in the Upper Cline.</div></div>","PeriodicalId":400,"journal":{"name":"Organic Geochemistry","volume":"203 ","pages":"Article 104953"},"PeriodicalIF":2.6,"publicationDate":"2025-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143508832","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Sources of bacterial 3-hydroxy fatty acids in Liangzihu Lake from central China: Implications for paleoclimate reconstruction
IF 2.6 3区 地球科学 Q2 GEOCHEMISTRY & GEOPHYSICS Pub Date : 2025-02-24 DOI: 10.1016/j.orggeochem.2025.104949
Honghai Wang , Yi Yang , Canfa Wang , Shucheng Xie
Bacterial 3-hydroxy fatty acids (3-OH-FAs) derived proxies are new tools for paleoclimate reconstruction. However, their effectiveness in temperature reconstruction in lake environments remains unclear. We investigated the compositions of 3-OH-FA and bacterial community across a transect from nearshore soils to water column and surface sediments in the center of Liangzihu Lake (LZH), central China, to elucidate the origins of 3-OH-FA within the lake environments and to evaluate their potential as temperature proxies. The 3-OH-FA in lake center sediments was found to be produced in situ, which can be further supported by the 16S rRNA gene sequencing results. We quantified the input of soil organic matter (OM) in the lake using a δ13Corg based two-end member model. The contribution of soil OM ranged from above 50% in nearshore sediments to < 20% in the lake center, reflecting a decreased influence of soil contribution offshore. Moreover, 3-OH-FA based temperature proxies, RAN13 (the ratio of anteiso to normal C13) and RIN17 (the ratio of iso to normal C17) were examined. The temperature estimates derived from the RAN13 were close to the meteorological temperature, whereas the temperature estimates based on RIN17 are lower than the measured temperature. Therefore, our study not only elucidates the sources of 3-OH-FAs within LZH but also evaluates the reliability of associated temperature indices, which provides insights into temperature reconstruction in lake sediment cores.
{"title":"Sources of bacterial 3-hydroxy fatty acids in Liangzihu Lake from central China: Implications for paleoclimate reconstruction","authors":"Honghai Wang ,&nbsp;Yi Yang ,&nbsp;Canfa Wang ,&nbsp;Shucheng Xie","doi":"10.1016/j.orggeochem.2025.104949","DOIUrl":"10.1016/j.orggeochem.2025.104949","url":null,"abstract":"<div><div>Bacterial 3-hydroxy fatty acids (3-OH-FAs) derived proxies are new tools for paleoclimate reconstruction. However, their effectiveness in temperature reconstruction in lake environments remains unclear. We investigated the compositions of 3-OH-FA and bacterial community across a transect from nearshore soils to water column and surface sediments in the center of Liangzihu Lake (LZH), central China, to elucidate the origins of 3-OH-FA within the lake environments and to evaluate their potential as temperature proxies. The 3-OH-FA in lake center sediments was found to be produced in situ, which can be further supported by the 16S rRNA gene sequencing results. We quantified the input of soil organic matter (OM) in the lake using a δ<sup>13</sup>C<sub>org</sub> based two-end member model. The contribution of soil OM ranged from above 50% in nearshore sediments to &lt; 20% in the lake center, reflecting a decreased influence of soil contribution offshore. Moreover, 3-OH-FA based temperature proxies, RAN<sub>13</sub> (the ratio of <em>anteiso</em> to <em>normal</em> C<sub>13</sub>) and RIN<sub>17</sub> (the ratio of <em>iso</em> to <em>normal</em> C<sub>17</sub>) were examined. The temperature estimates derived from the RAN<sub>13</sub> were close to the meteorological temperature, whereas the temperature estimates based on RIN<sub>17</sub> are lower than the measured temperature. Therefore, our study not only elucidates the sources of 3-OH-FAs within LZH but also evaluates the reliability of associated temperature indices, which provides insights into temperature reconstruction in lake sediment cores.</div></div>","PeriodicalId":400,"journal":{"name":"Organic Geochemistry","volume":"203 ","pages":"Article 104949"},"PeriodicalIF":2.6,"publicationDate":"2025-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143474541","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Structural properties of organic matter in marine-continental transitional shales and impacts on methane accumulation
IF 2.6 3区 地球科学 Q2 GEOCHEMISTRY & GEOPHYSICS Pub Date : 2025-02-22 DOI: 10.1016/j.orggeochem.2025.104946
Zhen Qiu , Dongjun Song , Jingyu Zhang , Qin Zhang , Wen Liu , Weiliang Kong , Guangyin Cai , Wanli Gao , Tianquan Qu
The chemical structure characteristics of organic matter (OM) in marine-continental transitional (MCT) shales and the controls on shale gas accumulation were revealed through analysis of Raman spectroscopy, infrared spectroscopy, X-ray diffraction (XRD), transmission electron microscopy (TEM), and CO2 adsorption tests on the Lower Permian Shan-2 shale OM samples from the eastern margin of the Ordos Basin. Organic matter in the high-mature shale is enriched in aromatic groups, with a noticeable condensation and polymerization of the chemical structure after ∼3.0 %Rmc (Raman-based Ro). As %Rmc increases from 2.30 to 3.42, the position of the (002) peak from the stacking of aromatic layers increases from 25.15° to 25.88° in XRD spectra, the spacing between aromatic layers (d002) decreases from 0.3540 nm to 0.3444 nm, the calculated graphitization degree (level of OM transforming into graphite) gradually increases, and the carbon layers in the OM evolve from a chaotic shape to a better-oriented state in TEM images, directly indicating an elevated graphitized level. Release of heteroatoms from OM results in reduced average lateral size (La) and stacking height (Lc) of the aromatic layer, reaching minimum values at ∼3.0 to 3.2 %Rmc. The stacking of aromatic layers forms some organic micropores, as evidenced by similar micropore size distribution between OM and bulk shale samples, possibly favoring methane accumulation. These findings provide new insights into the factors that affect the gas accumulation characteristics in MCT shales.
{"title":"Structural properties of organic matter in marine-continental transitional shales and impacts on methane accumulation","authors":"Zhen Qiu ,&nbsp;Dongjun Song ,&nbsp;Jingyu Zhang ,&nbsp;Qin Zhang ,&nbsp;Wen Liu ,&nbsp;Weiliang Kong ,&nbsp;Guangyin Cai ,&nbsp;Wanli Gao ,&nbsp;Tianquan Qu","doi":"10.1016/j.orggeochem.2025.104946","DOIUrl":"10.1016/j.orggeochem.2025.104946","url":null,"abstract":"<div><div>The chemical structure characteristics of organic matter (OM) in marine-continental transitional (MCT) shales and the controls on shale gas accumulation were revealed through analysis of Raman spectroscopy, infrared spectroscopy, X-ray diffraction (XRD), transmission electron microscopy (TEM), and CO<sub>2</sub> adsorption tests on the Lower Permian Shan-2 shale OM samples from the eastern margin of the Ordos Basin. Organic matter in the high-mature shale is enriched in aromatic groups, with a noticeable condensation and polymerization of the chemical structure after ∼3.0 %R<sub>mc</sub> (Raman-based R<sub>o</sub>). As %R<sub>mc</sub> increases from 2.30 to 3.42, the position of the (002) peak from the stacking of aromatic layers increases from 25.15° to 25.88° in XRD spectra, the spacing between aromatic layers (d<sub>002</sub>) decreases from 0.3540 nm to 0.3444 nm, the calculated graphitization degree (level of OM transforming into graphite) gradually increases, and the carbon layers in the OM evolve from a chaotic shape to a better-oriented state in TEM images, directly indicating an elevated graphitized level. Release of heteroatoms from OM results in reduced average lateral size (L<sub>a</sub>) and stacking height (L<sub>c</sub>) of the aromatic layer, reaching minimum values at ∼3.0 to 3.2 %R<sub>mc</sub>. The stacking of aromatic layers forms some organic micropores, as evidenced by similar micropore size distribution between OM and bulk shale samples, possibly favoring methane accumulation. These findings provide new insights into the factors that affect the gas accumulation characteristics in MCT shales.</div></div>","PeriodicalId":400,"journal":{"name":"Organic Geochemistry","volume":"203 ","pages":"Article 104946"},"PeriodicalIF":2.6,"publicationDate":"2025-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143464518","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Chemodiversity of soil dissolved organic matter complementally improved by stepwise elution and electrospray ionization modes
IF 2.6 3区 地球科学 Q2 GEOCHEMISTRY & GEOPHYSICS Pub Date : 2025-02-22 DOI: 10.1016/j.orggeochem.2025.104965
Shasha Zhuo, Rong Qin, Qing-Long Fu
The chemodiversity of dissolved organic matter (DOM) molecules can affect the biogeochemical cycling of carbon and nitrogen in terrestrial and aquatic environments. In this study, the negative and positive ion modes of electrospray ionization (ESI(−) and ESI(+), respectively) coupled with Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) were employed to reveal the chemical composition of seven soil DOM isolates by stepwise elution using different methanol/water solvents. The intensity percentage of CHON molecules in soil DOM detected in the ESI(+) mode was 4.6%–47.3% higher than that for the ESI(−) mode. The O/C ratio, H/C ratio, and the nominal oxidation states of the carbon value of soil DOM molecules linearly correlated (R2 > 0.8 for 72% number of stepwise eluted DOM isolates) with the increasing volume of methanol in the SPE elution solvents in dual ion modes, demonstrating the selective fractionation of oxygen-rich and highly polar molecules by methanol-poor solvents. This polarity-dependent fractionation is expected to be universal across different soils. These results suggest that combining the ESI(−) and ESI(+) modes with stepwise elution enables the comprehensive characterization of soil DOM composition, favouring the in-depth understanding of the critical roles of DOM in the biogeochemical cycles of carbon and nitrogen.
{"title":"Chemodiversity of soil dissolved organic matter complementally improved by stepwise elution and electrospray ionization modes","authors":"Shasha Zhuo,&nbsp;Rong Qin,&nbsp;Qing-Long Fu","doi":"10.1016/j.orggeochem.2025.104965","DOIUrl":"10.1016/j.orggeochem.2025.104965","url":null,"abstract":"<div><div>The chemodiversity of dissolved organic matter (DOM) molecules can affect the biogeochemical cycling of carbon and nitrogen in terrestrial and aquatic environments. In this study, the negative and positive ion modes of electrospray ionization (ESI(−) and ESI(+), respectively) coupled with Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) were employed to reveal the chemical composition of seven soil DOM isolates by stepwise elution using different methanol/water solvents. The intensity percentage of CHON molecules in soil DOM detected in the ESI(+) mode was 4.6%–47.3% higher than that for the ESI(−) mode. The O/C ratio, H/C ratio, and the nominal oxidation states of the carbon value of soil DOM molecules linearly correlated (<em>R</em><sup>2</sup> &gt; 0.8 for 72% number of stepwise eluted DOM isolates) with the increasing volume of methanol in the SPE elution solvents in dual ion modes, demonstrating the selective fractionation of oxygen-rich and highly polar molecules by methanol-poor solvents. This polarity-dependent fractionation is expected to be universal across different soils. These results suggest that combining the ESI(−) and ESI(+) modes with stepwise elution enables the comprehensive characterization of soil DOM composition, favouring the in-depth understanding of the critical roles of DOM in the biogeochemical cycles of carbon and nitrogen.</div></div>","PeriodicalId":400,"journal":{"name":"Organic Geochemistry","volume":"203 ","pages":"Article 104965"},"PeriodicalIF":2.6,"publicationDate":"2025-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143552904","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Geochemical characteristics of ultra-deep natural gases 超深层天然气的地球化学特征
IF 2.6 3区 地球科学 Q2 GEOCHEMISTRY & GEOPHYSICS Pub Date : 2025-02-22 DOI: 10.1016/j.orggeochem.2025.104964
Mingming Jiang , Quanyou Liu
As a clean energy source, natural gas occurs at various depths. Natural gas exploration targets have shifted from shallow to ultra-deep reservoirs. Despite the considerable potential of ultra-deep exploration, its development remains limited. To accelerate and improve the exploration of ultra-deep natural gas, it is essential to thoroughly understand the characteristics and origins. Analyzing the geochemical characteristics of both hydrocarbon and non-hydrocarbon gases from ultra-deep reservoirs (depth > 6 km) across various global basins helps identify and classify their characteristics and origins. These gas pools typically contain helium in concentrations below 0.02% or is absent, with hydrogen generally below 2%, indicating that ultra-deep reservoirs may not serve as significant reservoirs for He and H2. For hydrocarbon gas genesis, thermogenesis is predominant, with illustrative examples from different basins. Concerning CO2 origins, inorganic processes such as thermochemical sulfate reduction (TSR) and magmatic CO2 are prevalent, while organic and mixed origins, including organic matter degradation, are less common. The primary origin of H2S is TSR, with the Mississippi Salt Basin being an exception due to possible contamination from inorganic volcanic gases interacting with hydrocarbon accumulations. Nitrogen’s origin is mainly related to the thermal evolution stage of source rocks. Understanding these gas characteristics provides valuable theoretical insights, which can guide the future exploration and development of ultra-deep natural gas and non-hydrocarbon gases.
{"title":"Geochemical characteristics of ultra-deep natural gases","authors":"Mingming Jiang ,&nbsp;Quanyou Liu","doi":"10.1016/j.orggeochem.2025.104964","DOIUrl":"10.1016/j.orggeochem.2025.104964","url":null,"abstract":"<div><div>As a clean energy source, natural gas occurs at various depths. Natural gas exploration targets have shifted from shallow to ultra-deep reservoirs. Despite the considerable potential of ultra-deep exploration, its development remains limited. To accelerate and improve the exploration of ultra-deep natural gas, it is essential to thoroughly understand the characteristics and origins. Analyzing the geochemical characteristics of both hydrocarbon and non-hydrocarbon gases from ultra-deep reservoirs (depth &gt; 6 km) across various global basins helps identify and classify their characteristics and origins. These gas pools typically contain helium in concentrations below 0.02% or is absent, with hydrogen generally below 2%, indicating that ultra-deep reservoirs may not serve as significant reservoirs for He and H<sub>2</sub>. For hydrocarbon gas genesis, thermogenesis is predominant, with illustrative examples from different basins. Concerning CO<sub>2</sub> origins, inorganic processes such as thermochemical sulfate reduction (TSR) and magmatic CO<sub>2</sub> are prevalent, while organic and mixed origins, including organic matter degradation, are less common. The primary origin of H<sub>2</sub>S is TSR, with the Mississippi Salt Basin being an exception due to possible contamination from inorganic volcanic gases interacting with hydrocarbon accumulations. Nitrogen’s origin is mainly related to the thermal evolution stage of source rocks. Understanding these gas characteristics provides valuable theoretical insights, which can guide the future exploration and development of ultra-deep natural gas and non-hydrocarbon gases.</div></div>","PeriodicalId":400,"journal":{"name":"Organic Geochemistry","volume":"203 ","pages":"Article 104964"},"PeriodicalIF":2.6,"publicationDate":"2025-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143464516","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Organic Geochemistry
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1