{"title":"Equivalence of lattice operators and graph matrices","authors":"Jun Yumoto, Tatsuhiro Misumi","doi":"10.1093/ptep/ptae009","DOIUrl":null,"url":null,"abstract":"We explore the relationship between lattice field theory and graph theory, placing special emphasis on the interplay between Dirac and scalar lattice operators and matrices within the realm of spectral graph theory. Beyond delving into fundamental concepts of spectral graph theory, such as adjacency and Laplacian matrices, we introduce a novel matrix named as “anti-symmetrized adjacency matrix”, specifically tailored for cycle digraphs (T1 lattice) and simple directed paths (B1 lattice). The nontrivial relation between graph theory matrices and lattice operators shows that the graph Laplacian matrix mirrors the lattice scalar operator and the Wilson term in lattice fermions, while the anti-symmetrized adjacency matrix, along with its extensions to higher dimensions, are equivalent to naive lattice Dirac operators. Building upon these connections, we provide rigorous proofs for two key assertions: (i) The count of zero-modes in a free lattice scalar operator coincides with the zeroth Betti number of the underlying graph (lattice). (ii) The maximum count of Dirac zero-modes in a free lattice fermion operator is equivalent to the cumulative sum of all Betti numbers when the D-dimensional graph results from a cartesian product of cycle digraphs (T1 lattice) and simple directed paths (B1 lattice).","PeriodicalId":20710,"journal":{"name":"Progress of Theoretical and Experimental Physics","volume":"3 1","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2024-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress of Theoretical and Experimental Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1093/ptep/ptae009","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0
Abstract
We explore the relationship between lattice field theory and graph theory, placing special emphasis on the interplay between Dirac and scalar lattice operators and matrices within the realm of spectral graph theory. Beyond delving into fundamental concepts of spectral graph theory, such as adjacency and Laplacian matrices, we introduce a novel matrix named as “anti-symmetrized adjacency matrix”, specifically tailored for cycle digraphs (T1 lattice) and simple directed paths (B1 lattice). The nontrivial relation between graph theory matrices and lattice operators shows that the graph Laplacian matrix mirrors the lattice scalar operator and the Wilson term in lattice fermions, while the anti-symmetrized adjacency matrix, along with its extensions to higher dimensions, are equivalent to naive lattice Dirac operators. Building upon these connections, we provide rigorous proofs for two key assertions: (i) The count of zero-modes in a free lattice scalar operator coincides with the zeroth Betti number of the underlying graph (lattice). (ii) The maximum count of Dirac zero-modes in a free lattice fermion operator is equivalent to the cumulative sum of all Betti numbers when the D-dimensional graph results from a cartesian product of cycle digraphs (T1 lattice) and simple directed paths (B1 lattice).
期刊介绍:
Progress of Theoretical and Experimental Physics (PTEP) is an international journal that publishes articles on theoretical and experimental physics. PTEP is a fully open access, online-only journal published by the Physical Society of Japan.
PTEP is the successor to Progress of Theoretical Physics (PTP), which terminated in December 2012 and merged into PTEP in January 2013.
PTP was founded in 1946 by Hideki Yukawa, the first Japanese Nobel Laureate. PTEP, the successor journal to PTP, has a broader scope than that of PTP covering both theoretical and experimental physics.
PTEP mainly covers areas including particles and fields, nuclear physics, astrophysics and cosmology, beam physics and instrumentation, and general and mathematical physics.