Darija Lemic , Darren J Kriticos , Helena Viric Gasparic , Ivana Pajač Živković , Catriona Duffy , Antigoni Akrivou , Noboru Ota
{"title":"Global change and adaptive biosecurity: managing current and emerging Aleurocanthus woglumi threats to Europe","authors":"Darija Lemic , Darren J Kriticos , Helena Viric Gasparic , Ivana Pajač Živković , Catriona Duffy , Antigoni Akrivou , Noboru Ota","doi":"10.1016/j.cois.2024.101164","DOIUrl":null,"url":null,"abstract":"<div><p>Global climate changes undermine the effectiveness of ‘set and forget’ phytosanitary regulations. Uncertainties in future greenhouse gas emission profiles render it impossible to accurately forecast future climate, thus limiting the ability to make long-term biosecurity policy decisions. Agile adaptive biosecurity frameworks are necessary to address these climatic uncertainties and to effectively manage current and emerging threats. This paper provides opinions on these issues and presents a case study focusing on the threats posed by <em>Aleurocanthus woglumi</em> (citrus blackfly) to Europe. It delves into the biology of the species, its preferred hosts, and how climate change could affect its spread. Utilizing a bioclimatic niche model, the paper estimates the potential distribution of <em>A. woglumi</em> in Europe under recent historical and medium-term future conditions, revealing a potential expansion of its range into higher elevations and more northern regions by the year 2050. The main aim is to leverage the results to showcase the system's sensitivity to likely emission scenarios, essentially stress-testing for potential emerging threats to biosecurity policies and phytosanitary regulations. The results underscore the significance of considering global change factors in pest risk assessment and phytosanitary regulations for effective risk mitigation. Consequently, adaptive biosecurity measures are essential, encompassing horizon scanning, enhanced targeted surveillance, periodic updates of risk assessments, and adjustments to regulations. For instance, biosecurity risk management could involve establishing a set of trigger conditions to prompt updates of risk assessments, such as identifying a zone where the confirmed establishment of a pest signifies a significant change in the pest risk profile. For jurisdictions containing areas modeled as being climatically suitable under historical climates or future climate scenarios, we caution against importing untreated host materials from regions that are likely to become suitable habitats for <em>A. woglumi</em> in the future. Moreover, it is important to consider both present and future climate change scenarios when making decisions to effectively address the threats posed by invasive species. In the case of highly impactful invasives, investing in preemptive biological control measures may prove to be a prudent choice.</p></div>","PeriodicalId":11038,"journal":{"name":"Current opinion in insect science","volume":null,"pages":null},"PeriodicalIF":5.8000,"publicationDate":"2024-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current opinion in insect science","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214574524000063","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Global climate changes undermine the effectiveness of ‘set and forget’ phytosanitary regulations. Uncertainties in future greenhouse gas emission profiles render it impossible to accurately forecast future climate, thus limiting the ability to make long-term biosecurity policy decisions. Agile adaptive biosecurity frameworks are necessary to address these climatic uncertainties and to effectively manage current and emerging threats. This paper provides opinions on these issues and presents a case study focusing on the threats posed by Aleurocanthus woglumi (citrus blackfly) to Europe. It delves into the biology of the species, its preferred hosts, and how climate change could affect its spread. Utilizing a bioclimatic niche model, the paper estimates the potential distribution of A. woglumi in Europe under recent historical and medium-term future conditions, revealing a potential expansion of its range into higher elevations and more northern regions by the year 2050. The main aim is to leverage the results to showcase the system's sensitivity to likely emission scenarios, essentially stress-testing for potential emerging threats to biosecurity policies and phytosanitary regulations. The results underscore the significance of considering global change factors in pest risk assessment and phytosanitary regulations for effective risk mitigation. Consequently, adaptive biosecurity measures are essential, encompassing horizon scanning, enhanced targeted surveillance, periodic updates of risk assessments, and adjustments to regulations. For instance, biosecurity risk management could involve establishing a set of trigger conditions to prompt updates of risk assessments, such as identifying a zone where the confirmed establishment of a pest signifies a significant change in the pest risk profile. For jurisdictions containing areas modeled as being climatically suitable under historical climates or future climate scenarios, we caution against importing untreated host materials from regions that are likely to become suitable habitats for A. woglumi in the future. Moreover, it is important to consider both present and future climate change scenarios when making decisions to effectively address the threats posed by invasive species. In the case of highly impactful invasives, investing in preemptive biological control measures may prove to be a prudent choice.
期刊介绍:
Current Opinion in Insect Science is a new systematic review journal that aims to provide specialists with a unique and educational platform to keep up–to–date with the expanding volume of information published in the field of Insect Science. As this is such a broad discipline, we have determined themed sections each of which is reviewed once a year.
The following 11 areas are covered by Current Opinion in Insect Science.
-Ecology
-Insect genomics
-Global Change Biology
-Molecular Physiology (Including Immunity)
-Pests and Resistance
-Parasites, Parasitoids and Biological Control
-Behavioural Ecology
-Development and Regulation
-Social Insects
-Neuroscience
-Vectors and Medical and Veterinary Entomology
There is also a section that changes every year to reflect hot topics in the field.
Section Editors, who are major authorities in their area, are appointed by the Editors of the journal. They divide their section into a number of topics, ensuring that the field is comprehensively covered and that all issues of current importance are emphasized. Section Editors commission articles from leading scientists on each topic that they have selected and the commissioned authors write short review articles in which they present recent developments in their subject, emphasizing the aspects that, in their opinion, are most important. In addition, they provide short annotations to the papers that they consider to be most interesting from all those published in their topic over the previous year.