{"title":"Research on Ground Microgravity Simulation System Based on Parallel Mechanism","authors":"Jiaxi Jin, Xuan Sun, Dong Yu, Zhaobo Chen","doi":"10.1007/s12217-023-10094-5","DOIUrl":null,"url":null,"abstract":"<div><p>This paper presents a reconfigurable satellite ground microgravity simulation system based on a parallel mechanism, which allows cxsfor adjustable gravity coefficients and can simulate three-dimensional space movement with fast response and high accuracy. Firstly, the parallel motion platform and parallel six-dimensional force sensor designed specifically for the microgravity simulation system serve as the mechanical structure of the system. Secondly, a control system for simulating microgravity has been proposed, which includes a data acquisition component and a motion control component. Thirdly, a novel microgravity simulation algorithm, which can adjust the gravity coefficient and is based on the constant variation method, was proposed to establish the mapping relationship between the six-dimensional external force and displacement. Finally, the six-dimensional force sensor is statically calibrated and demonstrated excellent measurement performance. After implementing gravity compensation through surface polynomial fitting, the motion platform for microgravity simulation can react within 0.15 s upon detection of a force signal by the sensor, with a response error of less than 3%. The ground microgravity simulation system based on parallel mechanisms has been successfully applied to test the tolerance capability of reconfigurable satellite docking interfaces.</p></div>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s12217-023-10094-5","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
This paper presents a reconfigurable satellite ground microgravity simulation system based on a parallel mechanism, which allows cxsfor adjustable gravity coefficients and can simulate three-dimensional space movement with fast response and high accuracy. Firstly, the parallel motion platform and parallel six-dimensional force sensor designed specifically for the microgravity simulation system serve as the mechanical structure of the system. Secondly, a control system for simulating microgravity has been proposed, which includes a data acquisition component and a motion control component. Thirdly, a novel microgravity simulation algorithm, which can adjust the gravity coefficient and is based on the constant variation method, was proposed to establish the mapping relationship between the six-dimensional external force and displacement. Finally, the six-dimensional force sensor is statically calibrated and demonstrated excellent measurement performance. After implementing gravity compensation through surface polynomial fitting, the motion platform for microgravity simulation can react within 0.15 s upon detection of a force signal by the sensor, with a response error of less than 3%. The ground microgravity simulation system based on parallel mechanisms has been successfully applied to test the tolerance capability of reconfigurable satellite docking interfaces.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.