Fast rapidly convergent penetrable scattering computations

Jagabandhu Paul, Ambuj Pandey, B. V. Rathish Kumar, Akash Anand
{"title":"Fast rapidly convergent penetrable scattering computations","authors":"Jagabandhu Paul, Ambuj Pandey, B. V. Rathish Kumar, Akash Anand","doi":"10.1186/s40323-023-00255-x","DOIUrl":null,"url":null,"abstract":"We present a fast high-order scheme for the numerical solution of a volume-surface integro-differential equation. Such equations arise in problems of scattering of time-harmonic acoustic and electromagnetic waves by inhomogeneous media with variable density wherein the material properties jump across the medium interface. The method uses a partition of unity to segregate the interior and the boundary regions of the scattering obstacle, enabling us to make use of specially designed quadratures to deal with the material discontinuities in a high-order manner. In particular, the method uses suitable changes of variables to resolve the singularities present in the integrals in conjunction with a decomposition of Green’s function via the addition theorem. To achieve a reduced computational cost, the method employs a Fast Fourier Transform (FFT) based acceleration strategy to compute the integrals over the boundary region. Moreover, the necessary offgrid evaluation of the density and the inter-grid transfer of data is achieved by applying an FFT-based refined-grid interpolation strategy. We validate the performance of the method through multiple scattering simulations. In particular, the numerical experiments demonstrate that the proposed method can handle high-contrast material properties without any adverse effect on the number of GMRES iterations.","PeriodicalId":37424,"journal":{"name":"Advanced Modeling and Simulation in Engineering Sciences","volume":"1 1","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2024-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Modeling and Simulation in Engineering Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s40323-023-00255-x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

Abstract

We present a fast high-order scheme for the numerical solution of a volume-surface integro-differential equation. Such equations arise in problems of scattering of time-harmonic acoustic and electromagnetic waves by inhomogeneous media with variable density wherein the material properties jump across the medium interface. The method uses a partition of unity to segregate the interior and the boundary regions of the scattering obstacle, enabling us to make use of specially designed quadratures to deal with the material discontinuities in a high-order manner. In particular, the method uses suitable changes of variables to resolve the singularities present in the integrals in conjunction with a decomposition of Green’s function via the addition theorem. To achieve a reduced computational cost, the method employs a Fast Fourier Transform (FFT) based acceleration strategy to compute the integrals over the boundary region. Moreover, the necessary offgrid evaluation of the density and the inter-grid transfer of data is achieved by applying an FFT-based refined-grid interpolation strategy. We validate the performance of the method through multiple scattering simulations. In particular, the numerical experiments demonstrate that the proposed method can handle high-contrast material properties without any adverse effect on the number of GMRES iterations.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
快速收敛的可穿透散射计算
我们提出了一种用于体积-表面积分微分方程数值求解的快速高阶方案。这种方程出现在时谐声波和电磁波被密度可变的非均质介质散射的问题中,其中材料特性在介质界面上跳跃。该方法使用统一分区来隔离散射障碍物的内部和边界区域,使我们能够利用专门设计的四元数以高阶方式处理材料的不连续性。特别是,该方法利用适当的变量变化来解决积分中存在的奇异点,并通过加法定理对格林函数进行分解。为了降低计算成本,该方法采用了基于快速傅立叶变换(FFT)的加速策略来计算边界区域的积分。此外,通过应用基于快速傅立叶变换的细化网格插值策略,实现了必要的密度离网格评估和网格间数据传输。我们通过多次散射模拟验证了该方法的性能。特别是,数值实验证明,所提出的方法可以处理高对比度的材料特性,而不会对 GMRES 的迭代次数产生任何不利影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Advanced Modeling and Simulation in Engineering Sciences
Advanced Modeling and Simulation in Engineering Sciences Engineering-Engineering (miscellaneous)
CiteScore
6.80
自引率
0.00%
发文量
22
审稿时长
30 weeks
期刊介绍: The research topics addressed by Advanced Modeling and Simulation in Engineering Sciences (AMSES) cover the vast domain of the advanced modeling and simulation of materials, processes and structures governed by the laws of mechanics. The emphasis is on advanced and innovative modeling approaches and numerical strategies. The main objective is to describe the actual physics of large mechanical systems with complicated geometries as accurately as possible using complex, highly nonlinear and coupled multiphysics and multiscale models, and then to carry out simulations with these complex models as rapidly as possible. In other words, this research revolves around efficient numerical modeling along with model verification and validation. Therefore, the corresponding papers deal with advanced modeling and simulation, efficient optimization, inverse analysis, data-driven computation and simulation-based control. These challenging issues require multidisciplinary efforts – particularly in modeling, numerical analysis and computer science – which are treated in this journal.
期刊最新文献
Discovering non-associated pressure-sensitive plasticity models with EUCLID. Application of graph neural networks to predict explosion-induced transient flow Role of physical structure on performance index of crossflow microchannel heat exchanger with regression analysis Enhanced prediction of thermomechanical systems using machine learning, PCA, and finite element simulation Peridynamic numerical investigation of asymmetric strain-controlled fatigue behaviour using the kinetic theory of fracture
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1