Jagabandhu Paul, Ambuj Pandey, B. V. Rathish Kumar, Akash Anand
{"title":"Fast rapidly convergent penetrable scattering computations","authors":"Jagabandhu Paul, Ambuj Pandey, B. V. Rathish Kumar, Akash Anand","doi":"10.1186/s40323-023-00255-x","DOIUrl":null,"url":null,"abstract":"We present a fast high-order scheme for the numerical solution of a volume-surface integro-differential equation. Such equations arise in problems of scattering of time-harmonic acoustic and electromagnetic waves by inhomogeneous media with variable density wherein the material properties jump across the medium interface. The method uses a partition of unity to segregate the interior and the boundary regions of the scattering obstacle, enabling us to make use of specially designed quadratures to deal with the material discontinuities in a high-order manner. In particular, the method uses suitable changes of variables to resolve the singularities present in the integrals in conjunction with a decomposition of Green’s function via the addition theorem. To achieve a reduced computational cost, the method employs a Fast Fourier Transform (FFT) based acceleration strategy to compute the integrals over the boundary region. Moreover, the necessary offgrid evaluation of the density and the inter-grid transfer of data is achieved by applying an FFT-based refined-grid interpolation strategy. We validate the performance of the method through multiple scattering simulations. In particular, the numerical experiments demonstrate that the proposed method can handle high-contrast material properties without any adverse effect on the number of GMRES iterations.","PeriodicalId":37424,"journal":{"name":"Advanced Modeling and Simulation in Engineering Sciences","volume":"1 1","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2024-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Modeling and Simulation in Engineering Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s40323-023-00255-x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0
Abstract
We present a fast high-order scheme for the numerical solution of a volume-surface integro-differential equation. Such equations arise in problems of scattering of time-harmonic acoustic and electromagnetic waves by inhomogeneous media with variable density wherein the material properties jump across the medium interface. The method uses a partition of unity to segregate the interior and the boundary regions of the scattering obstacle, enabling us to make use of specially designed quadratures to deal with the material discontinuities in a high-order manner. In particular, the method uses suitable changes of variables to resolve the singularities present in the integrals in conjunction with a decomposition of Green’s function via the addition theorem. To achieve a reduced computational cost, the method employs a Fast Fourier Transform (FFT) based acceleration strategy to compute the integrals over the boundary region. Moreover, the necessary offgrid evaluation of the density and the inter-grid transfer of data is achieved by applying an FFT-based refined-grid interpolation strategy. We validate the performance of the method through multiple scattering simulations. In particular, the numerical experiments demonstrate that the proposed method can handle high-contrast material properties without any adverse effect on the number of GMRES iterations.
期刊介绍:
The research topics addressed by Advanced Modeling and Simulation in Engineering Sciences (AMSES) cover the vast domain of the advanced modeling and simulation of materials, processes and structures governed by the laws of mechanics. The emphasis is on advanced and innovative modeling approaches and numerical strategies. The main objective is to describe the actual physics of large mechanical systems with complicated geometries as accurately as possible using complex, highly nonlinear and coupled multiphysics and multiscale models, and then to carry out simulations with these complex models as rapidly as possible. In other words, this research revolves around efficient numerical modeling along with model verification and validation. Therefore, the corresponding papers deal with advanced modeling and simulation, efficient optimization, inverse analysis, data-driven computation and simulation-based control. These challenging issues require multidisciplinary efforts – particularly in modeling, numerical analysis and computer science – which are treated in this journal.