On-Chain and Off-Chain Data Management for Blockchain-Internet of Things: A Multi-Agent Deep Reinforcement Learning Approach

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC ACS Applied Electronic Materials Pub Date : 2024-01-20 DOI:10.1007/s10723-023-09739-x
Y. P. Tsang, C. K. M. Lee, Kening Zhang, C. H. Wu, W. H. Ip
{"title":"On-Chain and Off-Chain Data Management for Blockchain-Internet of Things: A Multi-Agent Deep Reinforcement Learning Approach","authors":"Y. P. Tsang, C. K. M. Lee, Kening Zhang, C. H. Wu, W. H. Ip","doi":"10.1007/s10723-023-09739-x","DOIUrl":null,"url":null,"abstract":"<p>The emergence of blockchain technology has seen applications increasingly hybridise cloud storage and distributed ledger technology in the Internet of Things (IoT) and cyber-physical systems, complicating data management in decentralised applications (DApps). Because it is inefficient for blockchain technology to handle large amounts of data, effective on-chain and off-chain data management in peer-to-peer networks and cloud storage has drawn considerable attention. Space reservation is a cost-effective approach to managing cloud storage effectively, contrasting with the demand for additional space in real-time. Furthermore, off-chain data replication in the peer-to-peer network can eliminate single points of failure of DApps. However, recent research has rarely discussed optimising on-chain and off-chain data management in the blockchain-enabled IoT (BIoT) environment. In this study, the BIoT environment is modelled, with cloud storage and blockchain orchestrated over the peer-to-peer network. The asynchronous advantage actor-critic algorithm is applied to exploit intelligent agents with the optimal policy for data packing, space reservation, and data replication to achieve an intelligent data management strategy. The experimental analysis reveals that the proposed scheme demonstrates rapid convergence and superior performance in terms of average total reward compared with other typical schemes, resulting in enhanced scalability, security and reliability of blockchain-IoT networks, leading to an intelligent data management strategy.</p>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s10723-023-09739-x","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

The emergence of blockchain technology has seen applications increasingly hybridise cloud storage and distributed ledger technology in the Internet of Things (IoT) and cyber-physical systems, complicating data management in decentralised applications (DApps). Because it is inefficient for blockchain technology to handle large amounts of data, effective on-chain and off-chain data management in peer-to-peer networks and cloud storage has drawn considerable attention. Space reservation is a cost-effective approach to managing cloud storage effectively, contrasting with the demand for additional space in real-time. Furthermore, off-chain data replication in the peer-to-peer network can eliminate single points of failure of DApps. However, recent research has rarely discussed optimising on-chain and off-chain data management in the blockchain-enabled IoT (BIoT) environment. In this study, the BIoT environment is modelled, with cloud storage and blockchain orchestrated over the peer-to-peer network. The asynchronous advantage actor-critic algorithm is applied to exploit intelligent agents with the optimal policy for data packing, space reservation, and data replication to achieve an intelligent data management strategy. The experimental analysis reveals that the proposed scheme demonstrates rapid convergence and superior performance in terms of average total reward compared with other typical schemes, resulting in enhanced scalability, security and reliability of blockchain-IoT networks, leading to an intelligent data management strategy.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
区块链-物联网的链上和链下数据管理:多代理深度强化学习方法
随着区块链技术的出现,在物联网(IoT)和网络物理系统中,云存储和分布式账本技术的混合应用越来越多,这使得去中心化应用(DApps)中的数据管理变得更加复杂。由于区块链技术处理大量数据的效率较低,因此在点对点网络和云存储中进行有效的链上和链下数据管理备受关注。空间预留是有效管理云存储的一种经济有效的方法,与对额外空间的实时需求形成鲜明对比。此外,点对点网络中的链外数据复制可以消除 DApp 的单点故障。然而,最近的研究很少讨论在区块链支持的物联网(BIoT)环境中优化链上和链下数据管理的问题。本研究以 BIoT 环境为模型,通过点对点网络协调云存储和区块链。应用异步优势行动者批判算法,利用具有数据打包、空间预留和数据复制最优策略的智能代理,实现智能数据管理策略。实验分析表明,与其他典型方案相比,所提出的方案收敛速度快,平均总奖励性能优越,从而提高了区块链物联网网络的可扩展性、安全性和可靠性,实现了智能数据管理策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
期刊最新文献
Vitamin B12: prevention of human beings from lethal diseases and its food application. Current status and obstacles of narrowing yield gaps of four major crops. Cold shock treatment alleviates pitting in sweet cherry fruit by enhancing antioxidant enzymes activity and regulating membrane lipid metabolism. Removal of proteins and lipids affects structure, in vitro digestion and physicochemical properties of rice flour modified by heat-moisture treatment. Investigating the impact of climate variables on the organic honey yield in Turkey using XGBoost machine learning.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1