A strained N-capping motif in α-helices of βαβ-units

IF 3 3区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Journal of structural biology Pub Date : 2024-01-19 DOI:10.1016/j.jsb.2024.108063
Anton M. Kargatov
{"title":"A strained N-capping motif in α-helices of βαβ-units","authors":"Anton M. Kargatov","doi":"10.1016/j.jsb.2024.108063","DOIUrl":null,"url":null,"abstract":"<div><p>A novel helical N-capping motif has been considered. It occurs in the βα-arches of right-handed βαβ-units and contains an N-cap residue in a sterically strained conformation. Moreover, this amino acid position contains almost no glycines, that could relieve strain. It was shown that the N-cap adopts this conformation as a result of the unusual convergence between the second and third amino acid positions of the α-helix (counting from the N-cap) and the second position of the preceding β-strand. This is achieved by the presence of glycines in the specified positions (i.e. positions <em>i</em> – 2, <em>i</em> + 2 and <em>i</em> + 3, if N-cap is <em>i</em>). The N-cap conformation is stabilized by a hydrogen bond between the backbone amide group in the second position of the α-helix and the carbonyl group in the first position of the β-strand. The occurrence of similar N-capping motifs in different types of βαβ-units was compared and their structural differences caused by the influence of the environment were described. Study results may be useful for protein design and ab initio prediction of the 3D protein structure.</p></div>","PeriodicalId":17074,"journal":{"name":"Journal of structural biology","volume":null,"pages":null},"PeriodicalIF":3.0000,"publicationDate":"2024-01-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of structural biology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1047847724000030","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

A novel helical N-capping motif has been considered. It occurs in the βα-arches of right-handed βαβ-units and contains an N-cap residue in a sterically strained conformation. Moreover, this amino acid position contains almost no glycines, that could relieve strain. It was shown that the N-cap adopts this conformation as a result of the unusual convergence between the second and third amino acid positions of the α-helix (counting from the N-cap) and the second position of the preceding β-strand. This is achieved by the presence of glycines in the specified positions (i.e. positions i – 2, i + 2 and i + 3, if N-cap is i). The N-cap conformation is stabilized by a hydrogen bond between the backbone amide group in the second position of the α-helix and the carbonyl group in the first position of the β-strand. The occurrence of similar N-capping motifs in different types of βαβ-units was compared and their structural differences caused by the influence of the environment were described. Study results may be useful for protein design and ab initio prediction of the 3D protein structure.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
βαβ-单位的α-螺旋中的应变 N-封顶图案
我们研究了一种新的螺旋 N-封顶图案。它出现在右旋 βαβ 单元的 βα 缺口中,包含一个处于立体紧张构象中的 N-帽残基。此外,该氨基酸位置几乎不含可缓解应变的甘氨酸。研究表明,N-帽之所以采用这种构象,是因为α-螺旋(从 N-帽算起)的第二和第三个氨基酸位置与前面的 β 链的第二个位置之间存在不寻常的趋同。这是通过在指定位置(即 i - 2、i + 2 和 i + 3 位置,如果 N-cap 为 i)存在甘氨酸来实现的。α-螺旋第二位置的骨架酰胺基团与β-链第一位置的羰基之间的氢键稳定了 N-帽构象。比较了不同类型的βαβ-单位中出现的类似的N-封顶基团,并描述了它们受环境影响而产生的结构差异。研究结果可能有助于蛋白质设计和三维蛋白质结构的非初始预测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of structural biology
Journal of structural biology 生物-生化与分子生物学
CiteScore
6.30
自引率
3.30%
发文量
88
审稿时长
65 days
期刊介绍: Journal of Structural Biology (JSB) has an open access mirror journal, the Journal of Structural Biology: X (JSBX), sharing the same aims and scope, editorial team, submission system and rigorous peer review. Since both journals share the same editorial system, you may submit your manuscript via either journal homepage. You will be prompted during submission (and revision) to choose in which to publish your article. The editors and reviewers are not aware of the choice you made until the article has been published online. JSB and JSBX publish papers dealing with the structural analysis of living material at every level of organization by all methods that lead to an understanding of biological function in terms of molecular and supermolecular structure. Techniques covered include: • Light microscopy including confocal microscopy • All types of electron microscopy • X-ray diffraction • Nuclear magnetic resonance • Scanning force microscopy, scanning probe microscopy, and tunneling microscopy • Digital image processing • Computational insights into structure
期刊最新文献
Cryo-EM phase-plate images reveal unexpected levels of apparent specimen damage. Structural basis for the effects of Ser387 phosphorylation of MgcRacGAP on its GTPase-activating activities for CDC42 and RHOA. Computational study of the HLTF ATPase remodeling domain suggests its activity on dsDNA and implications in damage tolerance. Vesicle Picker: A tool for efficient identification of membrane protein complexes in vesicles Editorial
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1