Phillip J. Haubrock, Ismael Soto, Melina Kourantidou, Danish A. Ahmed, Ali Serhan Tarkan, Paride Balzani, Kristi Bego, Antonín Kouba, Sadi Aksu, Elizabeta Briski, Francisco Sylvester, Vanessa De Santis, Gaït Archambaud-Suard, Núria Bonada, Miguel Cañedo-Argüelles, Zoltán Csabai, Thibault Datry, Mathieu Floury, Jean-François Fruget, John Iwan Jones, Marie-Helene Lizee, Anthony Maire, John F. Murphy, Davis Ozolins, Jes Jessen Rasmussen, Agnija Skuja, Gábor Várbíró, Piet Verdonschot, Ralf C. M. Verdonschot, Peter Wiberg-Larsen, Ross N. Cuthbert
{"title":"Understanding the complex dynamics of zebra mussel invasions over several decades in European rivers: drivers, impacts and predictions","authors":"Phillip J. Haubrock, Ismael Soto, Melina Kourantidou, Danish A. Ahmed, Ali Serhan Tarkan, Paride Balzani, Kristi Bego, Antonín Kouba, Sadi Aksu, Elizabeta Briski, Francisco Sylvester, Vanessa De Santis, Gaït Archambaud-Suard, Núria Bonada, Miguel Cañedo-Argüelles, Zoltán Csabai, Thibault Datry, Mathieu Floury, Jean-François Fruget, John Iwan Jones, Marie-Helene Lizee, Anthony Maire, John F. Murphy, Davis Ozolins, Jes Jessen Rasmussen, Agnija Skuja, Gábor Várbíró, Piet Verdonschot, Ralf C. M. Verdonschot, Peter Wiberg-Larsen, Ross N. Cuthbert","doi":"10.1111/oik.10283","DOIUrl":null,"url":null,"abstract":"The zebra mussel <i>Dreissena polymorpha</i> is one of the most successful, notorious, and detrimental aquatic invasive non-native species worldwide, having invaded Europe and North America while causing substantial ecological and socio-economic impacts. Here, we investigated the spatiotemporal trends in this species' invasion success using 178 macroinvertebrate abundance time series, containing 1451 records of <i>D. polymorpha</i> collected across nine European countries between 1972–2019. Using these raw (absolute) abundance data, we examined trends and drivers of occurrences and relative abundances of <i>D. polymorpha</i> within invaded communities. Meta-regression models revealed non-significant trends both at the European level and for the majority of the invaded countries, except for France (significant decreasing trend) and Hungary (marginally positive trend). At the European level, the number of <i>D. polymorpha</i> occurrences over time followed a flat-top bell-shaped distribution, with a steep increase between 1973–1989 followed by a plateau phase prior to significantly declining post-1998. Using a series of climatic and hydromorphological site-specific characteristics of invaded and uninvaded sites from two periods (1998–2002; 2011–2015), we found that native richness, non-native abundance, distance to the next barrier, and elevation were associated with the occurrence of <i>D. polymorpha</i>. We also found that higher native richness and lower latitude were related to lower relative abundances. Using Cohen's D as a measure of <i>D. polymorpha</i> impact, we found that biodiversity within the invaded sites was initially higher than in uninvaded ones, but then declined, suggesting differences in biodiversity trends across invaded and uninvaded sites. While our results emphasise the high invasion success of <i>D. polymorpha</i>, increasing stressors within the context of global change – particularly ongoing climate change – are likely to enhance invasion rates and the impact of <i>D. polymorpha</i> in the near future, exacerbated by the lack of timely and effective management actions.","PeriodicalId":19496,"journal":{"name":"Oikos","volume":null,"pages":null},"PeriodicalIF":3.1000,"publicationDate":"2024-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Oikos","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1111/oik.10283","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The zebra mussel Dreissena polymorpha is one of the most successful, notorious, and detrimental aquatic invasive non-native species worldwide, having invaded Europe and North America while causing substantial ecological and socio-economic impacts. Here, we investigated the spatiotemporal trends in this species' invasion success using 178 macroinvertebrate abundance time series, containing 1451 records of D. polymorpha collected across nine European countries between 1972–2019. Using these raw (absolute) abundance data, we examined trends and drivers of occurrences and relative abundances of D. polymorpha within invaded communities. Meta-regression models revealed non-significant trends both at the European level and for the majority of the invaded countries, except for France (significant decreasing trend) and Hungary (marginally positive trend). At the European level, the number of D. polymorpha occurrences over time followed a flat-top bell-shaped distribution, with a steep increase between 1973–1989 followed by a plateau phase prior to significantly declining post-1998. Using a series of climatic and hydromorphological site-specific characteristics of invaded and uninvaded sites from two periods (1998–2002; 2011–2015), we found that native richness, non-native abundance, distance to the next barrier, and elevation were associated with the occurrence of D. polymorpha. We also found that higher native richness and lower latitude were related to lower relative abundances. Using Cohen's D as a measure of D. polymorpha impact, we found that biodiversity within the invaded sites was initially higher than in uninvaded ones, but then declined, suggesting differences in biodiversity trends across invaded and uninvaded sites. While our results emphasise the high invasion success of D. polymorpha, increasing stressors within the context of global change – particularly ongoing climate change – are likely to enhance invasion rates and the impact of D. polymorpha in the near future, exacerbated by the lack of timely and effective management actions.
期刊介绍:
Oikos publishes original and innovative research on all aspects of ecology, defined as organism-environment interactions at various spatiotemporal scales, so including macroecology and evolutionary ecology. Emphasis is on theoretical and empirical work aimed at generalization and synthesis across taxa, systems and ecological disciplines. Papers can contribute to new developments in ecology by reporting novel theory or critical empirical results, and "synthesis" can include developing new theory, tests of general hypotheses, or bringing together established or emerging areas of ecology. Confirming or extending the established literature, by for example showing results that are novel for a new taxon, or purely applied research, is given low priority.