Mariana Furtado Granato de Albuquerque, Maíra Nicolau de Almeida, Murillo Peterlini Tavares, Rafaela Inês de Souza Ladeira Ázar, Lílian da Silva Fialho, Sebastião Tavares de Rezende, Valéria Monteze Guimarães
{"title":"Two α-Arabinofuranosidases from Chrysoporthe cubensis and Their Effects on Sugarcane Bagasse Saccharification","authors":"Mariana Furtado Granato de Albuquerque, Maíra Nicolau de Almeida, Murillo Peterlini Tavares, Rafaela Inês de Souza Ladeira Ázar, Lílian da Silva Fialho, Sebastião Tavares de Rezende, Valéria Monteze Guimarães","doi":"10.1007/s12155-024-10721-y","DOIUrl":null,"url":null,"abstract":"<div><p>Two α-arabinofuranosidases from the fungus <i>Chrysoporthe cubensis</i> COAD 3356 were partially purified, identified, characterized, and applied to the sugarcane bagasse saccharification to evaluate the potential of these enzymes to increase the sugar production from lignocellulosic biomass. The α-arabinofuranosidases were classified on GH51 (α-Ara1) and GH54/CBM42 (α-Ara2) families. After sugarcane bagasse saccharification, using the commercial cellulase-rich cocktail supplemented with α-Ara2 (15 U/g), there was an increase of 1.6, 3.9, and 6.1 times in the release of glucose, xylose, and arabinose, respectively. On the other hand, there was no increase in sugar release with α-Ara1 supplementation under the same saccharification conditions. The enzymes presented maximum activity at pH 4.0, and 60 °C. Both α-Ara1 and α-Ara2 were thermostable at 50 °C, presenting half-life values of 68 and 77 h, respectively. The enzyme α-Ara2 presented higher <i>K</i><sub>Mapp</sub> for synthetic substrate ρNP-α-arabinofuranoside (1.38 mmol/L) and wheat arabinoxylan (1.28 mmol/L) when compared with α-Ara1. A new fungal α-arabinofuranosidase structure, still little described in the GH51 family, was predicted. Furthermore, the results indicated that α-Ara2 is a promising molecule to be used to supplement cocktails for lignocellulose degradation.</p><h3>Graphical Abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":487,"journal":{"name":"BioEnergy Research","volume":"17 3","pages":"1584 - 1597"},"PeriodicalIF":3.1000,"publicationDate":"2024-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BioEnergy Research","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s12155-024-10721-y","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
Two α-arabinofuranosidases from the fungus Chrysoporthe cubensis COAD 3356 were partially purified, identified, characterized, and applied to the sugarcane bagasse saccharification to evaluate the potential of these enzymes to increase the sugar production from lignocellulosic biomass. The α-arabinofuranosidases were classified on GH51 (α-Ara1) and GH54/CBM42 (α-Ara2) families. After sugarcane bagasse saccharification, using the commercial cellulase-rich cocktail supplemented with α-Ara2 (15 U/g), there was an increase of 1.6, 3.9, and 6.1 times in the release of glucose, xylose, and arabinose, respectively. On the other hand, there was no increase in sugar release with α-Ara1 supplementation under the same saccharification conditions. The enzymes presented maximum activity at pH 4.0, and 60 °C. Both α-Ara1 and α-Ara2 were thermostable at 50 °C, presenting half-life values of 68 and 77 h, respectively. The enzyme α-Ara2 presented higher KMapp for synthetic substrate ρNP-α-arabinofuranoside (1.38 mmol/L) and wheat arabinoxylan (1.28 mmol/L) when compared with α-Ara1. A new fungal α-arabinofuranosidase structure, still little described in the GH51 family, was predicted. Furthermore, the results indicated that α-Ara2 is a promising molecule to be used to supplement cocktails for lignocellulose degradation.
期刊介绍:
BioEnergy Research fills a void in the rapidly growing area of feedstock biology research related to biomass, biofuels, and bioenergy. The journal publishes a wide range of articles, including peer-reviewed scientific research, reviews, perspectives and commentary, industry news, and government policy updates. Its coverage brings together a uniquely broad combination of disciplines with a common focus on feedstock biology and science, related to biomass, biofeedstock, and bioenergy production.