Sulfate Radical-Based Advanced Oxidation Technology to Remove Pesticides From Water A Review of the Most Recent Technologies

IF 2.6 4区 环境科学与生态学 Q3 ENVIRONMENTAL SCIENCES International Journal of Environmental Research Pub Date : 2024-01-22 DOI:10.1007/s41742-023-00561-7
Aly Derbalah, Hiroshi Sakugawa
{"title":"Sulfate Radical-Based Advanced Oxidation Technology to Remove Pesticides From Water A Review of the Most Recent Technologies","authors":"Aly Derbalah, Hiroshi Sakugawa","doi":"10.1007/s41742-023-00561-7","DOIUrl":null,"url":null,"abstract":"<p>Pesticides are being discharged into the environment at an increasing rate, particularly into water resources, as agricultural productivity increases. These contaminants need to break down and mineralize as soon as possible since they are extremely dangerous to aquatic life and human health. The advanced oxidation method based on sulfate radicals (SR-AOP) has gained popularity recently for treating organic pollutants like pesticides because of its great efficacy and low environmental impact. This article goes into detail about the many ways for activating persulfate (PS) and peroxymonosulfate (PMS) for pesticides degradation, such as UV light, carbon-based materials, TMs, ultrasonic, electrochemical, heat, microwave, photoelectrons, alkali, and hybrid activation. The mechanisms of pesticide the degradation by SR-AOP, as well as the detection of reactive oxygen species (ROS), are also addressed. The effect of operational parameters such as PS/PMS concentration, catalyst dose, pH, pesticide starting concentration, and organic and inorganic matter on pesticide degradation by SR-AOP is also discussed. The toxicity of the degraded intermediates, as well as enhancing pesticide total mineralization under SR-AOP, was also investigated. Finally, prospects for future research and application of SR-AOP in pesticides removal from water are highlighted.</p><h3 data-test=\"abstract-sub-heading\">Graphical Abstract</h3>\n","PeriodicalId":14121,"journal":{"name":"International Journal of Environmental Research","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2024-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Environmental Research","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1007/s41742-023-00561-7","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Pesticides are being discharged into the environment at an increasing rate, particularly into water resources, as agricultural productivity increases. These contaminants need to break down and mineralize as soon as possible since they are extremely dangerous to aquatic life and human health. The advanced oxidation method based on sulfate radicals (SR-AOP) has gained popularity recently for treating organic pollutants like pesticides because of its great efficacy and low environmental impact. This article goes into detail about the many ways for activating persulfate (PS) and peroxymonosulfate (PMS) for pesticides degradation, such as UV light, carbon-based materials, TMs, ultrasonic, electrochemical, heat, microwave, photoelectrons, alkali, and hybrid activation. The mechanisms of pesticide the degradation by SR-AOP, as well as the detection of reactive oxygen species (ROS), are also addressed. The effect of operational parameters such as PS/PMS concentration, catalyst dose, pH, pesticide starting concentration, and organic and inorganic matter on pesticide degradation by SR-AOP is also discussed. The toxicity of the degraded intermediates, as well as enhancing pesticide total mineralization under SR-AOP, was also investigated. Finally, prospects for future research and application of SR-AOP in pesticides removal from water are highlighted.

Graphical Abstract

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于硫酸根的高级氧化技术去除水中的农药 最新技术综述
随着农业生产力的提高,农药排放到环境中的速度越来越快,尤其是排放到水资源中。这些污染物需要尽快分解和矿化,因为它们对水生生物和人类健康危害极大。基于硫酸根自由基的高级氧化法(SR-AOP)因其高效且对环境影响小,最近在处理农药等有机污染物方面越来越受欢迎。本文详细介绍了活化过硫酸盐(PS)和过硫酸盐(PMS)降解农药的多种方法,如紫外光、碳基材料、TMs、超声波、电化学、热、微波、光电子、碱和混合活化等。此外,还探讨了 SR-AOP 降解农药的机理以及活性氧(ROS)的检测。此外,还讨论了 PS/PMS 浓度、催化剂剂量、pH 值、农药起始浓度以及有机物和无机物等操作参数对 SR-AOP 降解农药的影响。此外,还研究了降解中间产物的毒性,以及在 SR-AOP 条件下提高农药总矿化度的问题。最后,强调了 SR-AOP 在去除水中农药方面的未来研究和应用前景。 图文摘要
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
5.40
自引率
0.00%
发文量
104
审稿时长
1.7 months
期刊介绍: International Journal of Environmental Research is a multidisciplinary journal concerned with all aspects of environment. In pursuit of these, environmentalist disciplines are invited to contribute their knowledge and experience. International Journal of Environmental Research publishes original research papers, research notes and reviews across the broad field of environment. These include but are not limited to environmental science, environmental engineering, environmental management and planning and environmental design, urban and regional landscape design and natural disaster management. Thus high quality research papers or reviews dealing with any aspect of environment are welcomed. Papers may be theoretical, interpretative or experimental.
期刊最新文献
Air Quality Variations and Influence of COVID‑19 Lockdown Restrictions on it in Tabriz, Iran Efficient Degradation of Bezafibrate Using the Fe(II)/Sulfite Process: Kinetics, Mechanism and Influence on DBP Formation Heavy Metals Analysis in the Vicinity of a Northcentral Nigeria Major Scrap-Iron Smelting Plant Modification of Nanofiltration Membranes by Cationic Surfactant as a Promising Strategy for Treatment of Pharmaceutical Wastewater Noise Mapping and Impact of COVID-19 Lock Down on Traffic Noise Induced Health Issues Using SEM Approach
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1