Pub Date : 2024-09-17DOI: 10.1007/s41742-024-00660-z
Vahideh Barzegar, Parvin Sarbakhsh, Robab Valizadeh, Akbar Gholampour
The severe lockdown imposed to prevent the spread of COVID-19 decreased the emissions of air pollutants in large cities. A comparative approach was adopted to analyze the effect of the COVID-19 lockdown on ambient air pollution concentrations and the impacts of meteorological parameters on them using data from air quality monitoring stations (AQMS) in Tabriz, Iran. Air quality improvement was significant for all pollutants, except for O3, in the first phase of the lockdown compared to other phases. The lockdown (restricted social contact, closing of shops, schools, universities, restaurants, and many administrative centers and companies, etc.) temporarily reduced air pollutants. Comparing meteorological parameters between lockdown periods and the same period in previous years showed no statistically significant variations (P-value < 0.05). Therefore, the meteorological parameters did not intervene in reducing air pollutants during the lockdown. The effects of lockdown on the concentration of air pollutants could provide a special way to understand the extent of quarantine compliance by citizens, evaluate additional air quality policies, and assess the impacts of reducing various emission sources.
{"title":"Air Quality Variations and Influence of COVID‑19 Lockdown Restrictions on it in Tabriz, Iran","authors":"Vahideh Barzegar, Parvin Sarbakhsh, Robab Valizadeh, Akbar Gholampour","doi":"10.1007/s41742-024-00660-z","DOIUrl":"https://doi.org/10.1007/s41742-024-00660-z","url":null,"abstract":"<p>The severe lockdown imposed to prevent the spread of COVID-19 decreased the emissions of air pollutants in large cities. A comparative approach was adopted to analyze the effect of the COVID-19 lockdown on ambient air pollution concentrations and the impacts of meteorological parameters on them using data from air quality monitoring stations (AQMS) in Tabriz, Iran. Air quality improvement was significant for all pollutants, except for O<sub>3</sub>, in the first phase of the lockdown compared to other phases. The lockdown (restricted social contact, closing of shops, schools, universities, restaurants, and many administrative centers and companies, etc.) temporarily reduced air pollutants. Comparing meteorological parameters between lockdown periods and the same period in previous years showed no statistically significant variations (P-value < 0.05). Therefore, the meteorological parameters did not intervene in reducing air pollutants during the lockdown. The effects of lockdown on the concentration of air pollutants could provide a special way to understand the extent of quarantine compliance by citizens, evaluate additional air quality policies, and assess the impacts of reducing various emission sources.</p>","PeriodicalId":14121,"journal":{"name":"International Journal of Environmental Research","volume":"49 1","pages":""},"PeriodicalIF":3.2,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142249829","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Bezafibrate (BZF), an extensively used lipid-regulating agent, has been frequently detected in aqueous environments. In this work, we systematically investigated the Fe(II)/sulfite process for degrading BZF and its impact on disinfection byproducts (DBPs) during postchlorination. Degradation conditions were optimized by adjusting the pH, sulfite concentration, Fe(II), and BZF concentration. Under the conditions of pH = 4, [BZF]0 = 5 μM, [Fe(II)]0 = 25 μM, and [sulfite]0 = 250 μM, the BZF removal efficiency reaches 97.9% in 15 min. Sulfate radicals (SO4●–) and singlet oxygen (1O2) are recognized as the main reactive agents, with Fe(IV) also contributing to the removal of BZF. Common anions (Cl− and HCO3−) and humic acid generally impede the degradation process, except that trace amounts of Cl− can slightly accelerate BZF degradation. A total of ten products are recognized by ultra high performance liquid chromatography and quadrupole time-of-flight mass spectrometry, and four major degradation pathways are proposed: hydroxylation, cleavage of amino bonds, removal of fibrate chains, and dechlorination. Meanwhile, the toxicity assessment shows that the majority of products exhibit lower biological toxicity and less bioaccumulation potential than BZF itself. The Fe(II)/sulfite pretreatment alters the DBP formation potential, especially when Br− is present. The formation of trichloromethane (TCM) is diminished following pretreatment with the Fe(II)/sulfite process, whereas a noticeable increase in the formation of dichloroacetonitrile (DCAN) is found. Moreover, Fe(II)/sulfite pretreatment enhances the formation of brominated DBPs. Therefore, special consideration should be given to DBP formation when a Fe(II)/sulfite system is employed as a pretreatment for the removal of BZF in water.