A Transfer Learning Method to Generate Synthetic Synoptic Magnetograms

IF 3.7 2区 地球科学 Space Weather Pub Date : 2024-01-21 DOI:10.1029/2023sw003499
Xiaoyue Li, Senthamizh Pavai Valliappan, Daria Shukhobodskaia, Mark D. Butala, Luciano Rodriguez, Jasmina Magdalenic, Véronique Delouille
{"title":"A Transfer Learning Method to Generate Synthetic Synoptic Magnetograms","authors":"Xiaoyue Li, Senthamizh Pavai Valliappan, Daria Shukhobodskaia, Mark D. Butala, Luciano Rodriguez, Jasmina Magdalenic, Véronique Delouille","doi":"10.1029/2023sw003499","DOIUrl":null,"url":null,"abstract":"Current magnetohydrodynamics (MHD) models largely rely on synoptic magnetograms, such as the ones produced by the Global Oscillation Network Group (GONG). Magnetograms are currently available mostly from the front side of the Sun, which significantly reduces the accuracy of MHD modeling. Extreme Ultraviolet (EUV) images can instead be obtained from other vantage points. To investigate the potential, we explore the possibility of using EUV information from the Atmospheric Imaging Assembly (AIA) to directly generate the input for the state-of-the-art 3D MHD model European Heliospheric FORecasting Information Asset (EUHFORIA). Toward this goal, we develop a method called Transfer-Solar-GAN which combines a conditional generative adversarial network with a transfer learning approach to overcome training data set limitations. The source domain data set is constructed from multiple pairs of the central portion of co-registered AIA and Helioseismic and Magnetic Imager (HMI) line of sight (LOS) full-disk images, while the target domain is constructed from pairs of portions of AIA and GONG sine-latitude synoptic maps that we call <i>segments</i>. We evaluate Transfer-Solar-GAN by comparing modeled and measured solar wind velocity and magnetic field density parameters at the <i>L</i><sub>1</sub> Lagrange point and along the Parker Solar Probe (PSP) trajectory which were determined with EUHFORIA using both empirical GONG and artificial-intelligence (AI)-synthetic synoptic magnetograms as inputs. Our results demonstrate that the Transfer-Solar-GAN model can provide the necessary information to run solar physics models by EUV information. Our proposed model is trained with only 528 paired image segments and enforces a reliable data division strategy.","PeriodicalId":22181,"journal":{"name":"Space Weather","volume":"204 1","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2024-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Space Weather","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1029/2023sw003499","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Current magnetohydrodynamics (MHD) models largely rely on synoptic magnetograms, such as the ones produced by the Global Oscillation Network Group (GONG). Magnetograms are currently available mostly from the front side of the Sun, which significantly reduces the accuracy of MHD modeling. Extreme Ultraviolet (EUV) images can instead be obtained from other vantage points. To investigate the potential, we explore the possibility of using EUV information from the Atmospheric Imaging Assembly (AIA) to directly generate the input for the state-of-the-art 3D MHD model European Heliospheric FORecasting Information Asset (EUHFORIA). Toward this goal, we develop a method called Transfer-Solar-GAN which combines a conditional generative adversarial network with a transfer learning approach to overcome training data set limitations. The source domain data set is constructed from multiple pairs of the central portion of co-registered AIA and Helioseismic and Magnetic Imager (HMI) line of sight (LOS) full-disk images, while the target domain is constructed from pairs of portions of AIA and GONG sine-latitude synoptic maps that we call segments. We evaluate Transfer-Solar-GAN by comparing modeled and measured solar wind velocity and magnetic field density parameters at the L1 Lagrange point and along the Parker Solar Probe (PSP) trajectory which were determined with EUHFORIA using both empirical GONG and artificial-intelligence (AI)-synthetic synoptic magnetograms as inputs. Our results demonstrate that the Transfer-Solar-GAN model can provide the necessary information to run solar physics models by EUV information. Our proposed model is trained with only 528 paired image segments and enforces a reliable data division strategy.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
生成合成同步磁图的迁移学习方法
目前的磁流体动力学(MHD)模型主要依赖于同步磁图,如全球涛动网络组(GONG)制作的磁图。磁图目前主要来自太阳正面,这大大降低了 MHD 模型的准确性。而极紫外(EUV)图像则可以从其他有利位置获得。为了研究其潜力,我们探索了利用大气成像组件(AIA)的极紫外信息直接生成最先进的三维 MHD 模型欧洲日光层重力铸造信息资产(EUHFORIA)输入的可能性。为实现这一目标,我们开发了一种名为 Transfer-Solar-GAN 的方法,该方法将条件生成对抗网络与迁移学习方法相结合,以克服训练数据集的限制。源域数据集是由多对共同注册的 AIA 和太阳地震与磁成像仪(HMI)视线(LOS)全盘图像的中心部分构建的,而目标域则是由 AIA 和 GONG 正弦纬度同步图的多对部分构建的,我们称之为片段。我们通过比较 L1 拉格朗日点和帕克太阳探测器(PSP)轨迹上的太阳风速度和磁场密度参数,对 Transfer-Solar-GAN 进行了评估,这些参数是使用经验 GONG 和人工智能(AI)合成的同步磁图作为输入,通过 EUHFORIA 确定的。我们的研究结果表明,Transfer-Solar-GAN 模型可以提供运行太阳物理模型所需的 EUV 信息。我们提出的模型仅用 528 个成对图像片段进行了训练,并执行了可靠的数据分割策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
29.70%
发文量
166
期刊最新文献
Quantification of Representation Error in the Neutral Winds and Ion Drifts Using Data Assimilation A Novel Ionospheric Inversion Model: PINN-SAMI3 (Physics Informed Neural Network Based on SAMI3) Nowcasting Solar EUV Irradiance With Photospheric Magnetic Fields and the Mg II Index Calculating the High-Latitude Ionospheric Electrodynamics Using a Machine Learning-Based Field-Aligned Current Model Effects of Forbush Decreases on the Global Electric Circuit
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1