Exploring the design of reward functions in deep reinforcement learning-based vehicle velocity control algorithms

Yixu He , Yang Liu , Lan Yang , Xiaobo Qu
{"title":"Exploring the design of reward functions in deep reinforcement learning-based vehicle velocity control algorithms","authors":"Yixu He ,&nbsp;Yang Liu ,&nbsp;Lan Yang ,&nbsp;Xiaobo Qu","doi":"10.1080/19427867.2024.2305018","DOIUrl":null,"url":null,"abstract":"<div><div>The application of deep reinforcement learning (DRL) techniques in intelligent transportation systems garners significant attention. In this field, reward function design is a crucial factor for DRL performance. Current research predominantly relies on a trial-and-error approach for designing reward functions, lacking mathematical support and necessitating extensive empirical experimentation. Our research uses vehicle velocity control as a case study, build training and test sets, and develop a DRL framework for speed control. This framework examines both single-objective and multi-objective optimization in reward function designs. In single-objective optimization, we introduce “expected optimal velocity” as an optimization objective and analyze how different reward functions affect performance, providing a mathematical perspective on optimizing reward functions. In multi-objective optimization, we propose a reward function design paradigm and validate its effectiveness. Our findings offer a versatile framework and theoretical guidance for developing and optimizing reward functions in DRL, particularly for intelligent transportation systems.</div></div>","PeriodicalId":48974,"journal":{"name":"Transportation Letters-The International Journal of Transportation Research","volume":"16 10","pages":"Pages 1338-1352"},"PeriodicalIF":3.3000,"publicationDate":"2024-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transportation Letters-The International Journal of Transportation Research","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/org/science/article/pii/S194278672400002X","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"TRANSPORTATION","Score":null,"Total":0}
引用次数: 0

Abstract

The application of deep reinforcement learning (DRL) techniques in intelligent transportation systems garners significant attention. In this field, reward function design is a crucial factor for DRL performance. Current research predominantly relies on a trial-and-error approach for designing reward functions, lacking mathematical support and necessitating extensive empirical experimentation. Our research uses vehicle velocity control as a case study, build training and test sets, and develop a DRL framework for speed control. This framework examines both single-objective and multi-objective optimization in reward function designs. In single-objective optimization, we introduce “expected optimal velocity” as an optimization objective and analyze how different reward functions affect performance, providing a mathematical perspective on optimizing reward functions. In multi-objective optimization, we propose a reward function design paradigm and validate its effectiveness. Our findings offer a versatile framework and theoretical guidance for developing and optimizing reward functions in DRL, particularly for intelligent transportation systems.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
探索基于深度强化学习的车辆速度控制算法中的奖励函数设计
深度强化学习(DRL)技术在智能交通系统中的应用备受关注。在这一领域,奖励函数设计是 DRL 的关键因素。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
6.40
自引率
14.30%
发文量
79
审稿时长
>12 weeks
期刊介绍: Transportation Letters: The International Journal of Transportation Research is a quarterly journal that publishes high-quality peer-reviewed and mini-review papers as well as technical notes and book reviews on the state-of-the-art in transportation research. The focus of Transportation Letters is on analytical and empirical findings, methodological papers, and theoretical and conceptual insights across all areas of research. Review resource papers that merge descriptions of the state-of-the-art with innovative and new methodological, theoretical, and conceptual insights spanning all areas of transportation research are invited and of particular interest.
期刊最新文献
Exploring the travel behavioral differences for the elderly mobility on public transit Exploring hierarchy shift of travelers’ public transport dependence using an improved Apriori algorithm Cooperative vehicle-infrastructure warning (CVIW) applications: people’s willingness to pay and perceived importance Joint optimization of fixed route bus networks and complementary paratransit service areas Evaluating the effectiveness of engineering countermeasures at yellow dilemma zone: a driving simulator-based study
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1