Courtney G Collins, Amy L Angert, Karin Clark, Sarah C Elmendorf, Cassandra Elphinstone, Greg H R Henry
{"title":"Flowering time responses to warming drive reproductive fitness in a changing Arctic.","authors":"Courtney G Collins, Amy L Angert, Karin Clark, Sarah C Elmendorf, Cassandra Elphinstone, Greg H R Henry","doi":"10.1093/aob/mcae007","DOIUrl":null,"url":null,"abstract":"<p><strong>Background and aims: </strong>The Arctic is warming at an alarming rate, leading to earlier spring conditions and plant phenology. It is often unclear to what degree changes in reproductive fitness (flower, fruit and seed production) are a direct response to warming versus an indirect response through shifting phenology. The aim of this study was to quantify the relative importance of these direct and indirect pathways and project the net effects of warming on plant phenology and reproductive fitness under current and future climate scenarios.</p><p><strong>Methods: </strong>We used two long-term datasets on 12 tundra species in the Canadian Arctic as part of the International Tundra Experiment (ITEX). Phenology and reproductive fitness were recorded annually on tagged individual plants at both Daring Lake, Northwest Territories (64° 52' N, - 111° 35' W) and Alexandra Fiord, Nunavut (78° 49' N, - 75° 48' W). The plant species encompassed a wide taxonomic diversity across a range of plant functional types with circumpolar/boreal distributions. We used hierarchical Bayesian structural equation models to compare the direct and indirect effects of climate warming on phenology and reproductive fitness across species, sites and years.</p><p><strong>Key results: </strong>We found that warming, both experimental and ambient, drove earlier flowering across species, which led to higher numbers of flowers and fruits produced, reflecting directional phenotypic selection for earlier flowering phenology. Furthermore, this indirect effect of climate warming mediated through phenology was generally about two to three times stronger than the direct effect of climate on reproductive fitness. Under future climate predictions, individual plants showed a ~2- to 4.5-fold increase in their reproductive fitness (flower counts) with advanced flowering phenology.</p><p><strong>Conclusions: </strong>Our results suggest that, on average, the benefits of early flowering, such as increased development time and subsequent enhanced reproductive fitness, might outweigh its risks. Overall, this work provides important insights into population-level consequences of phenological shifts in a warming Arctic over multi-decadal time scales.</p>","PeriodicalId":8023,"journal":{"name":"Annals of botany","volume":" ","pages":"255-268"},"PeriodicalIF":3.6000,"publicationDate":"2025-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11805937/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of botany","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/aob/mcae007","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Background and aims: The Arctic is warming at an alarming rate, leading to earlier spring conditions and plant phenology. It is often unclear to what degree changes in reproductive fitness (flower, fruit and seed production) are a direct response to warming versus an indirect response through shifting phenology. The aim of this study was to quantify the relative importance of these direct and indirect pathways and project the net effects of warming on plant phenology and reproductive fitness under current and future climate scenarios.
Methods: We used two long-term datasets on 12 tundra species in the Canadian Arctic as part of the International Tundra Experiment (ITEX). Phenology and reproductive fitness were recorded annually on tagged individual plants at both Daring Lake, Northwest Territories (64° 52' N, - 111° 35' W) and Alexandra Fiord, Nunavut (78° 49' N, - 75° 48' W). The plant species encompassed a wide taxonomic diversity across a range of plant functional types with circumpolar/boreal distributions. We used hierarchical Bayesian structural equation models to compare the direct and indirect effects of climate warming on phenology and reproductive fitness across species, sites and years.
Key results: We found that warming, both experimental and ambient, drove earlier flowering across species, which led to higher numbers of flowers and fruits produced, reflecting directional phenotypic selection for earlier flowering phenology. Furthermore, this indirect effect of climate warming mediated through phenology was generally about two to three times stronger than the direct effect of climate on reproductive fitness. Under future climate predictions, individual plants showed a ~2- to 4.5-fold increase in their reproductive fitness (flower counts) with advanced flowering phenology.
Conclusions: Our results suggest that, on average, the benefits of early flowering, such as increased development time and subsequent enhanced reproductive fitness, might outweigh its risks. Overall, this work provides important insights into population-level consequences of phenological shifts in a warming Arctic over multi-decadal time scales.
期刊介绍:
Annals of Botany is an international plant science journal publishing novel and rigorous research in all areas of plant science. It is published monthly in both electronic and printed forms with at least two extra issues each year that focus on a particular theme in plant biology. The Journal is managed by the Annals of Botany Company, a not-for-profit educational charity established to promote plant science worldwide.
The Journal publishes original research papers, invited and submitted review articles, ''Research in Context'' expanding on original work, ''Botanical Briefings'' as short overviews of important topics, and ''Viewpoints'' giving opinions. All papers in each issue are summarized briefly in Content Snapshots , there are topical news items in the Plant Cuttings section and Book Reviews . A rigorous review process ensures that readers are exposed to genuine and novel advances across a wide spectrum of botanical knowledge. All papers aim to advance knowledge and make a difference to our understanding of plant science.