H* Species Regulation by Mn-Co(OH)2 for Efficient Nitrate Electro-reduction in Neutral Solution

IF 16.1 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Angewandte Chemie International Edition Pub Date : 2024-01-22 DOI:10.1002/anie.202400206
Shaozhen Liang, Xue Teng, Heng Xu, Prof. Lisong Chen, Prof. Jianlin Shi
{"title":"H* Species Regulation by Mn-Co(OH)2 for Efficient Nitrate Electro-reduction in Neutral Solution","authors":"Shaozhen Liang,&nbsp;Xue Teng,&nbsp;Heng Xu,&nbsp;Prof. Lisong Chen,&nbsp;Prof. Jianlin Shi","doi":"10.1002/anie.202400206","DOIUrl":null,"url":null,"abstract":"<p>During the electrocatalytic NO<sub>3</sub><sup>−</sup> reduction reaction (NO<sub>3</sub><sup>−</sup>RR) under neutral condition, the activation of H<sub>2</sub>O to generate H* and the inhibition of inter-H* species binding, are critically important but remain challenging for suppressing the non-desirable hydrogen evolution reaction (HER). Here, a Mn-doped Co(OH)<sub>2</sub> (named as Mn-Co(OH)<sub>2</sub>) has been synthesized by <i>in situ</i> reconstruction in the electrolyte, which is able to dissociate H<sub>2</sub>O molecules but inhibits the binding of H* species between each other owing to the increased interatomic spacing by the Mn-doping. The Mn-Co(OH)<sub>2</sub> electrocatalyst offers a faradaic efficiency (FE) of as high as 98.9±1.7% at −0.6 V vs. the reversible hydrogen electrode (RHE) and an energy efficiency (EE) of 49.90±1.03% for NH<sub>3</sub> production by NO<sub>3</sub><sup>−</sup>RR, which are among the highest of the recently reported state-of-the-art catalysts in neutral electrolyte. Moreover, negligible degradation at −200 mA cm<sup>−2</sup> has been found for at least 500 h, which is the longest catalytic durations ever reported. This work paves a novel approach for the design and synthesis of efficient NO<sub>3</sub><sup>−</sup>RR electrocatalysts.</p>","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":null,"pages":null},"PeriodicalIF":16.1000,"publicationDate":"2024-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/anie.202400206","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

During the electrocatalytic NO3 reduction reaction (NO3RR) under neutral condition, the activation of H2O to generate H* and the inhibition of inter-H* species binding, are critically important but remain challenging for suppressing the non-desirable hydrogen evolution reaction (HER). Here, a Mn-doped Co(OH)2 (named as Mn-Co(OH)2) has been synthesized by in situ reconstruction in the electrolyte, which is able to dissociate H2O molecules but inhibits the binding of H* species between each other owing to the increased interatomic spacing by the Mn-doping. The Mn-Co(OH)2 electrocatalyst offers a faradaic efficiency (FE) of as high as 98.9±1.7% at −0.6 V vs. the reversible hydrogen electrode (RHE) and an energy efficiency (EE) of 49.90±1.03% for NH3 production by NO3RR, which are among the highest of the recently reported state-of-the-art catalysts in neutral electrolyte. Moreover, negligible degradation at −200 mA cm−2 has been found for at least 500 h, which is the longest catalytic durations ever reported. This work paves a novel approach for the design and synthesis of efficient NO3RR electrocatalysts.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在中性溶液中通过 Mn-Co(OH)2 调节 H* 物种以实现高效硝酸盐电还原。
在中性条件下的电催化 NO3- 还原反应(NO3-RR)中,激活 H2O 生成 H* 以及抑制 H* 物种间的结合是至关重要的,但对于抑制非理想的氢演化反应(HER)而言仍具有挑战性。本文通过在电解质中原位重构合成了掺锰的 Co(OH)2(命名为 Mn-Co(OH)2),它能够离解 H2O 分子,但由于掺锰增加了原子间距,因此抑制了 H* 物种之间的结合。与可逆氢电极(RHE)相比,Mn-Co(OH)2 电催化剂在 -0.6 V 电压下的法拉第效率(FE)高达 98.9 ± 1.7%,通过 NO3-RR 生产 NH3 的能效(EE)为 49.90 ± 1.03%,是最近报道的中性电解质中最先进催化剂中最高的。此外,在 -200 mA cm-2 的条件下,至少 500 小时的降解可以忽略不计,这是迄今为止所报道的最长催化持续时间。这项工作为设计和合成高效的 NO3-RR 电催化剂开辟了一条新途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
26.60
自引率
6.60%
发文量
3549
审稿时长
1.5 months
期刊介绍: Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.
期刊最新文献
Confinement effects and manipulation strategies of nanocomposite membranes towards molecular separation. Enhanced Coplanarity and Giant Birefringence in Hydroxypyridinium Nitrate via Hydrogen Bonding between Planar Donors and Planar Acceptors. Location-Specific Microenvironment Modulation Around Single-Atom Metal Sites in Metal-Organic Frameworks for Boosting Catalysis. Biosynthetic Origin of the Methoxy Group in Quinine and Related Alkaloids Bioinspired synthesis of cucurbalsaminones B and C.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1