Deisy Guimarães Carneiro, Ananda Pereira Aguilar, Hilário Cuquetto Mantovani, Tiago Antônio de Oliveira Mendes, Maria Cristina Dantas Vanetti
{"title":"The quorum sensing molecule C12-HSL promotes biofilm formation and increases <i>adrA</i> expression in <i>Salmonella</i> Enteritidis under anaerobic conditions.","authors":"Deisy Guimarães Carneiro, Ananda Pereira Aguilar, Hilário Cuquetto Mantovani, Tiago Antônio de Oliveira Mendes, Maria Cristina Dantas Vanetti","doi":"10.1080/08927014.2024.2305385","DOIUrl":null,"url":null,"abstract":"<p><p>Acyl-homoserine lactones (AHLs) are quorum-sensing signaling molecules in Gram-negative bacteria and positively regulate biofilm formation in <i>Salmonella</i> under specific conditions. In this study, biofilm formation in <i>Salmonella enterica</i> was evaluated at 28 and 37 °C, under aerobic and anaerobic conditions. Additionally, the influence of the <i>N</i>-dodecanoyl-DL-homoserine lactone (C12-HSL) on biofilm formation and the expression of genes related to the synthesis of structural components, regulation, and quorum sensing was assessed under anaerobiosis at 28 and 37 °C. Biofilm formation was found not to be influenced by the atmospheric conditions at 28 °C. However, it was reduced at 37 °C under anaerobiosis. C12-HSL enhanced biofilm formation at 37 °C under anaerobiosis and increased the expression of the <i>adrA</i> and <i>luxS</i> genes, suggesting an increase in c-di-GMP, a second messenger that controls essential physiological functions in bacteria. These results provide new insights into the regulation of biofilm formation in <i>Salmonella</i> under anaerobic conditions.</p>","PeriodicalId":8898,"journal":{"name":"Biofouling","volume":" ","pages":"14-25"},"PeriodicalIF":2.6000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biofouling","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/08927014.2024.2305385","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/22 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Acyl-homoserine lactones (AHLs) are quorum-sensing signaling molecules in Gram-negative bacteria and positively regulate biofilm formation in Salmonella under specific conditions. In this study, biofilm formation in Salmonella enterica was evaluated at 28 and 37 °C, under aerobic and anaerobic conditions. Additionally, the influence of the N-dodecanoyl-DL-homoserine lactone (C12-HSL) on biofilm formation and the expression of genes related to the synthesis of structural components, regulation, and quorum sensing was assessed under anaerobiosis at 28 and 37 °C. Biofilm formation was found not to be influenced by the atmospheric conditions at 28 °C. However, it was reduced at 37 °C under anaerobiosis. C12-HSL enhanced biofilm formation at 37 °C under anaerobiosis and increased the expression of the adrA and luxS genes, suggesting an increase in c-di-GMP, a second messenger that controls essential physiological functions in bacteria. These results provide new insights into the regulation of biofilm formation in Salmonella under anaerobic conditions.
期刊介绍:
Biofouling is an international, peer-reviewed, multi-discliplinary journal which publishes original articles and mini-reviews and provides a forum for publication of pure and applied work on protein, microbial, fungal, plant and animal fouling and its control, as well as studies of all kinds on biofilms and bioadhesion.
Papers may be based on studies relating to characterisation, attachment, growth and control on any natural (living) or man-made surface in the freshwater, marine or aerial environments, including fouling, biofilms and bioadhesion in the medical, dental, and industrial context.
Specific areas of interest include antifouling technologies and coatings including transmission of invasive species, antimicrobial agents, biological interfaces, biomaterials, microbiologically influenced corrosion, membrane biofouling, food industry biofilms, biofilm based diseases and indwelling biomedical devices as substrata for fouling and biofilm growth, including papers based on clinically-relevant work using models that mimic the realistic environment in which they are intended to be used.