{"title":"Effect of Dexketoprofen on the Disposition Kinetics of Moxifloxacin in Plasma and Lung in Male and Female Rats.","authors":"Teslime Erdogan, Halis Oguz, Orhan Corum","doi":"10.2174/0113892002282271231219044508","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>The simultaneous use of NSAIDs and antibiotics is recommended for bacterial diseases in human and veterinary medicine. Moxifloxacin (MFX) and dexketoprofen (DEX) can be used simultaneously in bacterial infections. However, there are no studies on how the simultaneous use of DEX affects the pharmacokinetics of MFX in rats.</p><p><strong>Objectives: </strong>The aim of this study was to determine the effect of DEX on plasma and lung pharmacokinetics of MFX in male and female rats.</p><p><strong>Methods: </strong>A total of 132 rats were randomly divided into 2 groups: MFX (n=66, 33 males/33 females) and MFX+DEX (n=66, 33 females/33 males). MFX at a dose of 20 mg/kg and DEX at a dose of 25 mg/kg were administered intraperitoneally. Plasma and lung concentrations of MFX were determined using the highperformance liquid chromatography-UV and pharmacokinetic parameters were evaluated by noncompartmental analysis.</p><p><strong>Results: </strong>Simultaneous administration of DEX increased the plasma and lung area under the curve from 0 to 8 h (AUC<sub>0-8</sub>) and peak concentration (C<sub>max</sub>) of MFX in rats, while it significantly decreased the total body clearance (CL/F). When female and male rats were compared, significant differences were detected in AUC<sub>0-8</sub>, C<sub>max</sub>, CL/F and volume of distribution. The AUC<sub>0-8lung</sub>/AUC<sub>0-8plasma</sub> ratios of MFX were calculated as 1.68 and 1.65 in female rats and 5.15 and 4.90 in male rats after single and combined use, respectively.</p><p><strong>Conclusion: </strong>MFX was highly transferred to the lung tissue and this passage was remarkably higher in male rats. However, DEX administration increased the plasma concentration of MFX in both male and female rats but did not change its passage to the lung. However, there is a need for a more detailed investigation of the difference in the pharmacokinetics of MFX in male and female rats.</p>","PeriodicalId":10770,"journal":{"name":"Current drug metabolism","volume":" ","pages":"63-70"},"PeriodicalIF":2.1000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current drug metabolism","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2174/0113892002282271231219044508","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background: The simultaneous use of NSAIDs and antibiotics is recommended for bacterial diseases in human and veterinary medicine. Moxifloxacin (MFX) and dexketoprofen (DEX) can be used simultaneously in bacterial infections. However, there are no studies on how the simultaneous use of DEX affects the pharmacokinetics of MFX in rats.
Objectives: The aim of this study was to determine the effect of DEX on plasma and lung pharmacokinetics of MFX in male and female rats.
Methods: A total of 132 rats were randomly divided into 2 groups: MFX (n=66, 33 males/33 females) and MFX+DEX (n=66, 33 females/33 males). MFX at a dose of 20 mg/kg and DEX at a dose of 25 mg/kg were administered intraperitoneally. Plasma and lung concentrations of MFX were determined using the highperformance liquid chromatography-UV and pharmacokinetic parameters were evaluated by noncompartmental analysis.
Results: Simultaneous administration of DEX increased the plasma and lung area under the curve from 0 to 8 h (AUC0-8) and peak concentration (Cmax) of MFX in rats, while it significantly decreased the total body clearance (CL/F). When female and male rats were compared, significant differences were detected in AUC0-8, Cmax, CL/F and volume of distribution. The AUC0-8lung/AUC0-8plasma ratios of MFX were calculated as 1.68 and 1.65 in female rats and 5.15 and 4.90 in male rats after single and combined use, respectively.
Conclusion: MFX was highly transferred to the lung tissue and this passage was remarkably higher in male rats. However, DEX administration increased the plasma concentration of MFX in both male and female rats but did not change its passage to the lung. However, there is a need for a more detailed investigation of the difference in the pharmacokinetics of MFX in male and female rats.
期刊介绍:
Current Drug Metabolism aims to cover all the latest and outstanding developments in drug metabolism, pharmacokinetics, and drug disposition. The journal serves as an international forum for the publication of full-length/mini review, research articles and guest edited issues in drug metabolism. Current Drug Metabolism is an essential journal for academic, clinical, government and pharmaceutical scientists who wish to be kept informed and up-to-date with the most important developments. The journal covers the following general topic areas: pharmaceutics, pharmacokinetics, toxicology, and most importantly drug metabolism.
More specifically, in vitro and in vivo drug metabolism of phase I and phase II enzymes or metabolic pathways; drug-drug interactions and enzyme kinetics; pharmacokinetics, pharmacokinetic-pharmacodynamic modeling, and toxicokinetics; interspecies differences in metabolism or pharmacokinetics, species scaling and extrapolations; drug transporters; target organ toxicity and interindividual variability in drug exposure-response; extrahepatic metabolism; bioactivation, reactive metabolites, and developments for the identification of drug metabolites. Preclinical and clinical reviews describing the drug metabolism and pharmacokinetics of marketed drugs or drug classes.