Yuxiang Su, Xi Liang, Danhua Cao, Zhenyu Yang, Yuanlong Peng, Ming Zhao
{"title":"Research on a multi-dimensional image information fusion algorithm based on NSCT transform.","authors":"Yuxiang Su, Xi Liang, Danhua Cao, Zhenyu Yang, Yuanlong Peng, Ming Zhao","doi":"10.1007/s12200-023-00104-0","DOIUrl":null,"url":null,"abstract":"<p><p>Traditional inspection cameras determine targets and detect defects by capturing images of their light intensity, but in complex environments, the accuracy of inspection may decrease. Information based on polarization of light can characterize various features of a material, such as the roughness, texture, and refractive index, thus improving classification and recognition of targets. This paper uses a method based on noise template threshold matching to denoise and preprocess polarized images. It also reports on design of an image fusion algorithm, based on NSCT transform, to fuse light intensity images and polarized images. The results show that the fused image improves both subjective and objective evaluation indicators, relative to the source image, and can better preserve edge information and help to improve the accuracy of target recognition. This study provides a reference for the comprehensive application of multi-dimensional optical information in power inspection.</p>","PeriodicalId":12685,"journal":{"name":"Frontiers of Optoelectronics","volume":null,"pages":null},"PeriodicalIF":4.1000,"publicationDate":"2024-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11413279/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers of Optoelectronics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s12200-023-00104-0","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Traditional inspection cameras determine targets and detect defects by capturing images of their light intensity, but in complex environments, the accuracy of inspection may decrease. Information based on polarization of light can characterize various features of a material, such as the roughness, texture, and refractive index, thus improving classification and recognition of targets. This paper uses a method based on noise template threshold matching to denoise and preprocess polarized images. It also reports on design of an image fusion algorithm, based on NSCT transform, to fuse light intensity images and polarized images. The results show that the fused image improves both subjective and objective evaluation indicators, relative to the source image, and can better preserve edge information and help to improve the accuracy of target recognition. This study provides a reference for the comprehensive application of multi-dimensional optical information in power inspection.
期刊介绍:
Frontiers of Optoelectronics seeks to provide a multidisciplinary forum for a broad mix of peer-reviewed academic papers in order to promote rapid communication and exchange between researchers in China and abroad. It introduces and reflects significant achievements being made in the field of photonics or optoelectronics. The topics include, but are not limited to, semiconductor optoelectronics, nano-photonics, information photonics, energy photonics, ultrafast photonics, biomedical photonics, nonlinear photonics, fiber optics, laser and terahertz technology and intelligent photonics. The journal publishes reviews, research articles, letters, comments, special issues and so on.
Frontiers of Optoelectronics especially encourages papers from new emerging and multidisciplinary areas, papers reflecting the international trends of research and development, and on special topics reporting progress made in the field of optoelectronics. All published papers will reflect the original thoughts of researchers and practitioners on basic theories, design and new technology in optoelectronics.
Frontiers of Optoelectronics is strictly peer-reviewed and only accepts original submissions in English. It is a fully OA journal and the APCs are covered by Higher Education Press and Huazhong University of Science and Technology.
● Presents the latest developments in optoelectronics and optics
● Emphasizes the latest developments of new optoelectronic materials, devices, systems and applications
● Covers industrial photonics, information photonics, biomedical photonics, energy photonics, laser and terahertz technology, and more