Adrien Peytavie, James Gain, Eric Guérin, Oscar Argudo, Eric Galin
{"title":"DeadWood: Including disturbance and decay in the depiction of digital nature: ACM Transactions on Graphics: Vol 0, No ja","authors":"Adrien Peytavie, James Gain, Eric Guérin, Oscar Argudo, Eric Galin","doi":"10.1145/3641816","DOIUrl":null,"url":null,"abstract":"<p>The creation of truly believable simulated natural environments remains an unsolved problem in Computer Graphics. This is, in part, due to a lack of visual variety. In nature, apart from variation due to abiotic and biotic growth factors, a significant role is played by disturbance events, such as fires, windstorms, disease, and death and decay processes, which give rise to both standing dead trees (snags) and downed woody debris (logs). For instance, snags constitute on average \\(10\\% \\) of unmanaged forests by basal area, and logs account for \\(2 \\frac{1}{2} \\) times this quantity. </p><p>While previous systems have incorporated individual elements of disturbance (e.g., forest fires) and decay (e.g., the formation of humus), there has been no unifying treatment, perhaps because of the challenge of matching simulation results with generated geometric models. </p><p>In this paper, we present a framework that combines an ecosystem simulation, which explicitly incorporates disturbance events and decay processes, with a model realization process, which balances the uniqueness arising from life history with the need for instancing due to memory constraints. We tested our hypothesis concerning the visual impact of disturbance and decay with a two-alternative forced-choice experiment (<i>n</i> = 116). Our findings are that the presence of dead wood in various forms, as snags or logs, significantly improves the believability of natural scenes, while, surprisingly, general variation in the number of model instances, with up to 8 models per species, and a focus on disturbance events, does not.</p>","PeriodicalId":50913,"journal":{"name":"ACM Transactions on Graphics","volume":"39 1","pages":""},"PeriodicalIF":7.8000,"publicationDate":"2024-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Graphics","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/3641816","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
The creation of truly believable simulated natural environments remains an unsolved problem in Computer Graphics. This is, in part, due to a lack of visual variety. In nature, apart from variation due to abiotic and biotic growth factors, a significant role is played by disturbance events, such as fires, windstorms, disease, and death and decay processes, which give rise to both standing dead trees (snags) and downed woody debris (logs). For instance, snags constitute on average \(10\% \) of unmanaged forests by basal area, and logs account for \(2 \frac{1}{2} \) times this quantity.
While previous systems have incorporated individual elements of disturbance (e.g., forest fires) and decay (e.g., the formation of humus), there has been no unifying treatment, perhaps because of the challenge of matching simulation results with generated geometric models.
In this paper, we present a framework that combines an ecosystem simulation, which explicitly incorporates disturbance events and decay processes, with a model realization process, which balances the uniqueness arising from life history with the need for instancing due to memory constraints. We tested our hypothesis concerning the visual impact of disturbance and decay with a two-alternative forced-choice experiment (n = 116). Our findings are that the presence of dead wood in various forms, as snags or logs, significantly improves the believability of natural scenes, while, surprisingly, general variation in the number of model instances, with up to 8 models per species, and a focus on disturbance events, does not.
期刊介绍:
ACM Transactions on Graphics (TOG) is a peer-reviewed scientific journal that aims to disseminate the latest findings of note in the field of computer graphics. It has been published since 1982 by the Association for Computing Machinery. Starting in 2003, all papers accepted for presentation at the annual SIGGRAPH conference are printed in a special summer issue of the journal.