Encoded Marker Clusters for Auto-Labeling in Optical Motion Capture

IF 7.8 1区 计算机科学 Q1 COMPUTER SCIENCE, SOFTWARE ENGINEERING ACM Transactions on Graphics Pub Date : 2025-02-10 DOI:10.1145/3716847
Hao Wang, Taogang Hou, Tianhui Liu, Jiaxin Li, Tianmiao Wang
{"title":"Encoded Marker Clusters for Auto-Labeling in Optical Motion Capture","authors":"Hao Wang, Taogang Hou, Tianhui Liu, Jiaxin Li, Tianmiao Wang","doi":"10.1145/3716847","DOIUrl":null,"url":null,"abstract":"Marker-based optical motion capture (MoCap) is a vital tool in applications such as virtual production, and movement sciences. However, reconstructing scattered MoCap data into real motion sequences is challenging, and data processing is time-consuming and labor-intensive. Here we propose a novel framework for MoCap auto-labeling and matching. In this framework, we designed novel clusters of reflective markers called auto-labeling encoded marker clusters (AEMCs), including clusters with an explicit header (AEMCs-E) and an implicit header (AEMCs-I). Combining cluster design and coding theory gives each cluster a unique codeword for MoCap auto-labeling and matching. Moreover, we provide a method of mapping and decoding for cluster labeling. The labeling results are only determined by the intrinsic characteristics of the clusters instead of the skeleton structure or posture of the subjects. Compared with commercial software and data-driven methods, our method has better labeling accuracy in heterogeneous targets and unknown marker layouts, which demonstrates the promising application of motion capture in humans, rigid or flexible robots.","PeriodicalId":50913,"journal":{"name":"ACM Transactions on Graphics","volume":"86 1","pages":""},"PeriodicalIF":7.8000,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Graphics","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/3716847","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

Marker-based optical motion capture (MoCap) is a vital tool in applications such as virtual production, and movement sciences. However, reconstructing scattered MoCap data into real motion sequences is challenging, and data processing is time-consuming and labor-intensive. Here we propose a novel framework for MoCap auto-labeling and matching. In this framework, we designed novel clusters of reflective markers called auto-labeling encoded marker clusters (AEMCs), including clusters with an explicit header (AEMCs-E) and an implicit header (AEMCs-I). Combining cluster design and coding theory gives each cluster a unique codeword for MoCap auto-labeling and matching. Moreover, we provide a method of mapping and decoding for cluster labeling. The labeling results are only determined by the intrinsic characteristics of the clusters instead of the skeleton structure or posture of the subjects. Compared with commercial software and data-driven methods, our method has better labeling accuracy in heterogeneous targets and unknown marker layouts, which demonstrates the promising application of motion capture in humans, rigid or flexible robots.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
ACM Transactions on Graphics
ACM Transactions on Graphics 工程技术-计算机:软件工程
CiteScore
14.30
自引率
25.80%
发文量
193
审稿时长
12 months
期刊介绍: ACM Transactions on Graphics (TOG) is a peer-reviewed scientific journal that aims to disseminate the latest findings of note in the field of computer graphics. It has been published since 1982 by the Association for Computing Machinery. Starting in 2003, all papers accepted for presentation at the annual SIGGRAPH conference are printed in a special summer issue of the journal.
期刊最新文献
Encoded Marker Clusters for Auto-Labeling in Optical Motion Capture Direct Rendering of Intrinsic Triangulations Texture Size Reduction Through Symmetric Overlap and Texture Carving Don't Splat your Gaussians: Volumetric Ray-Traced Primitives for Modeling and Rendering Scattering and Emissive Media Implicit Bonded Discrete Element Method with Manifold Optimization
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1