Mahabuba Akhter, Syed Md. Minhaz Hossain, Rizma Sijana Nigar, Srabanti Paul, Khaleque Md. Aashiq Kamal, Anik Sen, Iqbal H. Sarker
{"title":"COVID-19 Fake News Detection using Deep Learning Model","authors":"Mahabuba Akhter, Syed Md. Minhaz Hossain, Rizma Sijana Nigar, Srabanti Paul, Khaleque Md. Aashiq Kamal, Anik Sen, Iqbal H. Sarker","doi":"10.1007/s40745-023-00507-y","DOIUrl":null,"url":null,"abstract":"<div><p>People may now receive and share information more quickly and easily than ever due to the widespread use of mobile networked devices. However, this can occasionally lead to the spread of false information. Such information is being disseminated widely, which may cause people to make incorrect decisions about potentially crucial topics. This occurred in 2020, the year of the fatal and extremely contagious Coronavirus Disease (COVID-19) outbreak. The spread of false information about COVID-19 on social media has already been labeled as an “infodemic” by the World Health Organization (WHO), causing serious difficulties for governments attempting to control the pandemic. Consequently, it is crucial to have a model for detecting fake news related to COVID-19. In this paper, we present an effective Convolutional Neural Network (CNN)-based deep learning model using word embedding. For selecting the best CNN architecture, we take into account the optimal values of model hyper-parameters using grid search. Further, for measuring the effectiveness of our proposed CNN model, various state-of-the-art machine learning algorithms are conducted for COVID-19 fake news detection. Among them, CNN outperforms with 96.19% mean accuracy, 95% mean F1-score, and 0.985 area under ROC curve (AUC).</p></div>","PeriodicalId":36280,"journal":{"name":"Annals of Data Science","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-01-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Data Science","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s40745-023-00507-y","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Decision Sciences","Score":null,"Total":0}
引用次数: 0
Abstract
People may now receive and share information more quickly and easily than ever due to the widespread use of mobile networked devices. However, this can occasionally lead to the spread of false information. Such information is being disseminated widely, which may cause people to make incorrect decisions about potentially crucial topics. This occurred in 2020, the year of the fatal and extremely contagious Coronavirus Disease (COVID-19) outbreak. The spread of false information about COVID-19 on social media has already been labeled as an “infodemic” by the World Health Organization (WHO), causing serious difficulties for governments attempting to control the pandemic. Consequently, it is crucial to have a model for detecting fake news related to COVID-19. In this paper, we present an effective Convolutional Neural Network (CNN)-based deep learning model using word embedding. For selecting the best CNN architecture, we take into account the optimal values of model hyper-parameters using grid search. Further, for measuring the effectiveness of our proposed CNN model, various state-of-the-art machine learning algorithms are conducted for COVID-19 fake news detection. Among them, CNN outperforms with 96.19% mean accuracy, 95% mean F1-score, and 0.985 area under ROC curve (AUC).
期刊介绍:
Annals of Data Science (ADS) publishes cutting-edge research findings, experimental results and case studies of data science. Although Data Science is regarded as an interdisciplinary field of using mathematics, statistics, databases, data mining, high-performance computing, knowledge management and virtualization to discover knowledge from Big Data, it should have its own scientific contents, such as axioms, laws and rules, which are fundamentally important for experts in different fields to explore their own interests from Big Data. ADS encourages contributors to address such challenging problems at this exchange platform. At present, how to discover knowledge from heterogeneous data under Big Data environment needs to be addressed. ADS is a series of volumes edited by either the editorial office or guest editors. Guest editors will be responsible for call-for-papers and the review process for high-quality contributions in their volumes.