Chinta Someswara Rao, Chitri Raminaidu, K. Butchi Raju, B. Sujatha
{"title":"Effective Fake News Classification Based on Lightweight RNN with NLP","authors":"Chinta Someswara Rao, Chitri Raminaidu, K. Butchi Raju, B. Sujatha","doi":"10.1007/s40745-023-00506-z","DOIUrl":null,"url":null,"abstract":"<div><p>Data is the most essential thing in the current world. By the year 2024, we will be able to generate 1.9 gigabytes of data per second. The creation of massive amounts of data has led to the birth of a wide range of technologies, which in turn is changing the world. Social media has brought the world to the tip of our fingers. It enables a person to access news from anywhere and at any time, but this has its cons too. It is leading to the spread of fake news and false information, and it is having a negative impact on society. Fake news is manipulated information that is disseminated via social media with the intent of causing harm to a person, agency, or organization. Keeping this view in mind, one must necessarily determine whether or not the news being spread is true before drawing conclusions. This will help avoid confusion among social media users, which is critical for ensuring positive social development. Detecting fake news has become one of the most difficult tasks a person can undertake. To get started with fake news detection, this paper will present a solution for detecting fake news based on recurrent neural networks.</p></div>","PeriodicalId":36280,"journal":{"name":"Annals of Data Science","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-01-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Data Science","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s40745-023-00506-z","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Decision Sciences","Score":null,"Total":0}
引用次数: 0
Abstract
Data is the most essential thing in the current world. By the year 2024, we will be able to generate 1.9 gigabytes of data per second. The creation of massive amounts of data has led to the birth of a wide range of technologies, which in turn is changing the world. Social media has brought the world to the tip of our fingers. It enables a person to access news from anywhere and at any time, but this has its cons too. It is leading to the spread of fake news and false information, and it is having a negative impact on society. Fake news is manipulated information that is disseminated via social media with the intent of causing harm to a person, agency, or organization. Keeping this view in mind, one must necessarily determine whether or not the news being spread is true before drawing conclusions. This will help avoid confusion among social media users, which is critical for ensuring positive social development. Detecting fake news has become one of the most difficult tasks a person can undertake. To get started with fake news detection, this paper will present a solution for detecting fake news based on recurrent neural networks.
期刊介绍:
Annals of Data Science (ADS) publishes cutting-edge research findings, experimental results and case studies of data science. Although Data Science is regarded as an interdisciplinary field of using mathematics, statistics, databases, data mining, high-performance computing, knowledge management and virtualization to discover knowledge from Big Data, it should have its own scientific contents, such as axioms, laws and rules, which are fundamentally important for experts in different fields to explore their own interests from Big Data. ADS encourages contributors to address such challenging problems at this exchange platform. At present, how to discover knowledge from heterogeneous data under Big Data environment needs to be addressed. ADS is a series of volumes edited by either the editorial office or guest editors. Guest editors will be responsible for call-for-papers and the review process for high-quality contributions in their volumes.