Unveiling the correlation between structural alterations and enhanced high-voltage cyclability in Na-deficient P3-type layered cathode materials via Li incorporation

Electron Pub Date : 2024-01-12 DOI:10.1002/elt2.18
Xiaoxia Yang, Suning Wang, Hang Li, Jochi Tseng, Zhonghua Wu, Sylvio Indris, Helmut Ehrenberg, Xiaodong Guo, Weibo Hua
{"title":"Unveiling the correlation between structural alterations and enhanced high-voltage cyclability in Na-deficient P3-type layered cathode materials via Li incorporation","authors":"Xiaoxia Yang,&nbsp;Suning Wang,&nbsp;Hang Li,&nbsp;Jochi Tseng,&nbsp;Zhonghua Wu,&nbsp;Sylvio Indris,&nbsp;Helmut Ehrenberg,&nbsp;Xiaodong Guo,&nbsp;Weibo Hua","doi":"10.1002/elt2.18","DOIUrl":null,"url":null,"abstract":"<p>With exceptional capacity during high-voltage cycling, P3-type Na-deficient layered oxide cathodes have captured substantial attention. Nevertheless, they are plagued by severe capacity degradation over cycling. In this study, tuning and optimizing the phase composition in layered oxides through Li incorporation are proposed to enhance the high-voltage stability. The structural dependence of layered Na<sub>2/3</sub>Li<sub><i>x</i></sub>Ni<sub>0.25</sub>Mn<sub>0.75</sub>O<sub>2+<i>δ</i></sub> oxides on the lithium content (0.0 ≤ <i>x</i> ≤ 1.0) offered during synthesis is investigated systematically on an atomic scale. Surprisingly, increasing the Li content triggers the formation of mixed P2/O3-type or P3/P2/O3-type layered phases. As the voltage window is 1.5–4.5 V, P3-type Na<sub>2/3</sub>Ni<sub>0.25</sub>Mn<sub>0.75</sub>O<sub>2</sub> (NL<sub>0.0</sub>NMO, <i>R</i><math>\n <semantics>\n <mrow>\n <mover>\n <mn>3</mn>\n <mo>‾</mo>\n </mover>\n </mrow>\n <annotation> $\\overline{3}$</annotation>\n </semantics></math><i>m</i>) material exhibits a sequence of phase transformations throughout the process of (de)sodiation, that is, O3⇌P3⇌O3′⇌O3″. Such complicated phase transitions can be effectively suppressed in the Na<sub>2/3</sub>Li<sub>0.7</sub>Ni<sub>0.25</sub>Mn<sub>0.75</sub>O<sub>2.4</sub> (NL<sub>0.7</sub>NMO) oxide with P2/P3/O3-type mixed phases. Consequently, cathodes made of NL<sub>0.7</sub>NMO exhibit a substantially enhanced cyclic performance at high voltages compared to that of the P3-type layered NL<sub>0.0</sub>NMO cathode. Specifically, NL<sub>0.7</sub>NMO demonstrates an outstanding capacity retention of 98% after 10 cycles at 1 C within 1.5–4.5 V, much higher than that of NL<sub>0.0</sub>NMO (83%). This work delves into the intricate realm of bolstering the high-voltage durability of layered oxide cathodes, paving the way for advanced sodium-ion battery technologies.</p>","PeriodicalId":100403,"journal":{"name":"Electron","volume":"2 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/elt2.18","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electron","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/elt2.18","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

With exceptional capacity during high-voltage cycling, P3-type Na-deficient layered oxide cathodes have captured substantial attention. Nevertheless, they are plagued by severe capacity degradation over cycling. In this study, tuning and optimizing the phase composition in layered oxides through Li incorporation are proposed to enhance the high-voltage stability. The structural dependence of layered Na2/3LixNi0.25Mn0.75O2+δ oxides on the lithium content (0.0 ≤ x ≤ 1.0) offered during synthesis is investigated systematically on an atomic scale. Surprisingly, increasing the Li content triggers the formation of mixed P2/O3-type or P3/P2/O3-type layered phases. As the voltage window is 1.5–4.5 V, P3-type Na2/3Ni0.25Mn0.75O2 (NL0.0NMO, R 3 $\overline{3}$ m) material exhibits a sequence of phase transformations throughout the process of (de)sodiation, that is, O3⇌P3⇌O3′⇌O3″. Such complicated phase transitions can be effectively suppressed in the Na2/3Li0.7Ni0.25Mn0.75O2.4 (NL0.7NMO) oxide with P2/P3/O3-type mixed phases. Consequently, cathodes made of NL0.7NMO exhibit a substantially enhanced cyclic performance at high voltages compared to that of the P3-type layered NL0.0NMO cathode. Specifically, NL0.7NMO demonstrates an outstanding capacity retention of 98% after 10 cycles at 1 C within 1.5–4.5 V, much higher than that of NL0.0NMO (83%). This work delves into the intricate realm of bolstering the high-voltage durability of layered oxide cathodes, paving the way for advanced sodium-ion battery technologies.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过掺入锂揭示缺钠 P3 型层状阴极材料的结构变化与增强高压循环性之间的相关性
P3 型缺钠层状氧化物阴极在高压循环过程中具有出色的容量,因此备受关注。然而,这些阴极在循环过程中存在严重的容量衰减问题。本研究提出通过掺入锂来调整和优化层状氧化物中的相组成,从而提高高压稳定性。我们在原子尺度上系统地研究了层状 Na2/3LixNi0.25Mn0.75O2+δ 氧化物的结构与合成过程中提供的锂含量(0.0 ≤ x ≤ 1.0)的关系。令人惊讶的是,锂含量的增加会引发 P2/O3 型或 P3/P2/O3 型混合层相的形成。当电压窗口为 1.5-4.5 V 时,P3 型 Na2/3Ni0.25Mn0.75O2 (NL0.0NMO, Rm) 材料在整个(去)钠化过程中会出现一系列相变,即 O3⇌P3⇌O3′⇌O3″。在具有 P2/P3/O3 型混合相的 Na2/3Li0.7Ni0.25Mn0.75O2.4 (NL0.7NMO) 氧化物中,这种复杂的相变可被有效抑制。因此,与 P3 型层状 NL0.0NMO 阴极相比,NL0.7NMO 阴极在高电压下的循环性能大大提高。具体来说,NL0.7NMO 在 1 C、1.5-4.5 V 的条件下循环 10 次后,容量保持率达到 98%,远高于 NL0.0NMO(83%)。这项研究深入探讨了提高层状氧化物阴极高压耐久性的复杂领域,为先进的钠离子电池技术铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Issue Information Cover Image, Volume 2, Number 4, November 2024 Cover Image, Volume 2, Number 4, November 2024 Design of long-wavelength infrared InAs/InAsSb type-II superlattice avalanche photodetector with stepped grading layer Recent progress on heteroepitaxial growth of single crystal diamond films
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1