Bingjie Xue , Li Tian , Yaqi Liu , Lingxiu Peng , Waheed Iqbal , Liangzhong Li , Yanping Mao
{"title":"Enhanced nitrate reduction in hypotrophic waters with integrated photocatalysis and biodegradation","authors":"Bingjie Xue , Li Tian , Yaqi Liu , Lingxiu Peng , Waheed Iqbal , Liangzhong Li , Yanping Mao","doi":"10.1016/j.ese.2024.100390","DOIUrl":null,"url":null,"abstract":"<div><p>Addressing nitrate contamination in water bodies is a critical environmental challenge, and Intimately Coupling Photocatalysis and Biodegradation (ICPB) presents a promising solution. However, there is still debate about the effectiveness of ICPB in reducing nitrate under hypotrophic conditions. Further research is needed to understand its microbial metabolic mechanism and the functional changes in bacterial structure. Here we explored microbial metabolic mechanisms and changes in bacterial structure in ICPB reactors integrating a meticulously screened TiO<sub>2</sub>/g-C<sub>3</sub>N<sub>4</sub> photocatalyst with biofilm. We achieved a 26.3% increase in nitrate reduction using 12.2% less organic carbon compared to traditional biodegradation methods. Metagenomic analysis of the microbial communities in ICPB reactors revealed evolving metabolic pathways conducive to nitrate reduction. This research not only elucidates the photocatalytic mechanism behind nitrate reduction in hypotrophic conditions but also provides genomic insights that pave the way for alternative approaches in water remediation technologies.</p></div>","PeriodicalId":34434,"journal":{"name":"Environmental Science and Ecotechnology","volume":"21 ","pages":"Article 100390"},"PeriodicalIF":14.0000,"publicationDate":"2024-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666498424000048/pdfft?md5=770cc72dd511305a5757a74175813492&pid=1-s2.0-S2666498424000048-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Science and Ecotechnology","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666498424000048","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Addressing nitrate contamination in water bodies is a critical environmental challenge, and Intimately Coupling Photocatalysis and Biodegradation (ICPB) presents a promising solution. However, there is still debate about the effectiveness of ICPB in reducing nitrate under hypotrophic conditions. Further research is needed to understand its microbial metabolic mechanism and the functional changes in bacterial structure. Here we explored microbial metabolic mechanisms and changes in bacterial structure in ICPB reactors integrating a meticulously screened TiO2/g-C3N4 photocatalyst with biofilm. We achieved a 26.3% increase in nitrate reduction using 12.2% less organic carbon compared to traditional biodegradation methods. Metagenomic analysis of the microbial communities in ICPB reactors revealed evolving metabolic pathways conducive to nitrate reduction. This research not only elucidates the photocatalytic mechanism behind nitrate reduction in hypotrophic conditions but also provides genomic insights that pave the way for alternative approaches in water remediation technologies.
期刊介绍:
Environmental Science & Ecotechnology (ESE) is an international, open-access journal publishing original research in environmental science, engineering, ecotechnology, and related fields. Authors publishing in ESE can immediately, permanently, and freely share their work. They have license options and retain copyright. Published by Elsevier, ESE is co-organized by the Chinese Society for Environmental Sciences, Harbin Institute of Technology, and the Chinese Research Academy of Environmental Sciences, under the supervision of the China Association for Science and Technology.