Development of novel superconductivity with higherTcvia the suppression of magnetism in quasi-two-dimensional electrideY2Cunder high pressures.

IF 2.3 4区 物理与天体物理 Q3 PHYSICS, CONDENSED MATTER Journal of Physics: Condensed Matter Pub Date : 2024-08-02 DOI:10.1088/1361-648X/ad21a6
Zhiqiang Cui, Ying Luo, Lei Shi, Yue Chen, Yunwei Zhang
{"title":"Development of novel superconductivity with higherTcvia the suppression of magnetism in quasi-two-dimensional electrideY2Cunder high pressures.","authors":"Zhiqiang Cui, Ying Luo, Lei Shi, Yue Chen, Yunwei Zhang","doi":"10.1088/1361-648X/ad21a6","DOIUrl":null,"url":null,"abstract":"<p><p>Discovery of superconductivity in electride materials has been a topic of interest as their intrinsic electron-rich properties might suggest a considerable electron-phonon interaction. LayeredY2Cis a ferromagnetic quasi-two-dimensional electride with polarized anionic electrons confined in the interlayer space. In this theoretical study, we reportY2Cundergoes a series of structural phase transitions into two superconducting phases with estimatedTcof 9.2 and 21.0 K at 19 and 80 GPa, respectively, via the suppression of magnetism. Our extensive first-principles swarm structure searches identify that these two high-pressure superconducting phases possess an orthorhombic<i>Pnma</i>and a tetragonal<i>I</i>4<i>/m</i>structures, respectively, where the<i>Pnma</i>phase is found to be a one-dimensional electride characterized by electron confinements in channel spaces of the crystal lattice, while the electride property in<i>I</i>4<i>/m</i>phase has been completely destroyed. We attribute the development of an unprecedentedly highTcsuperconductivity in Y-C system to the destructions of magnetism and the delocalization of interlayered anionic electrons under pressures. This work provides a unique example of pressure-induced collapse of magnetism at the onset of superconductivity in electride materials, along with the dramatic changes of electron-confinement topology in crystal lattices.</p>","PeriodicalId":16776,"journal":{"name":"Journal of Physics: Condensed Matter","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physics: Condensed Matter","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1361-648X/ad21a6","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 0

Abstract

Discovery of superconductivity in electride materials has been a topic of interest as their intrinsic electron-rich properties might suggest a considerable electron-phonon interaction. LayeredY2Cis a ferromagnetic quasi-two-dimensional electride with polarized anionic electrons confined in the interlayer space. In this theoretical study, we reportY2Cundergoes a series of structural phase transitions into two superconducting phases with estimatedTcof 9.2 and 21.0 K at 19 and 80 GPa, respectively, via the suppression of magnetism. Our extensive first-principles swarm structure searches identify that these two high-pressure superconducting phases possess an orthorhombicPnmaand a tetragonalI4/mstructures, respectively, where thePnmaphase is found to be a one-dimensional electride characterized by electron confinements in channel spaces of the crystal lattice, while the electride property inI4/mphase has been completely destroyed. We attribute the development of an unprecedentedly highTcsuperconductivity in Y-C system to the destructions of magnetism and the delocalization of interlayered anionic electrons under pressures. This work provides a unique example of pressure-induced collapse of magnetism at the onset of superconductivity in electride materials, along with the dramatic changes of electron-confinement topology in crystal lattices.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在高压条件下,通过抑制准二维电化物 Y2C 中的磁性,开发出具有更高 Tc 的新型超导性。
层状 Y2C 是一种铁磁性准二维电化物,其极化阴离子电子被限制在层间空间。在这项理论研究中,我们报告了 Y2C 在 19 和 80 GPa 条件下,通过抑制磁性,经历了一系列结构相变,形成了估计 Tc 分别为 9.2 和 21.0 K 的两个 超导相。我们通过大量的第一原理蜂群结构搜索发现,这两种高压超导相分别具有正交Pnma和四方I4/m结构,其中Pnma相是一维电化物 ,其特征是电子被限制在晶格的通道空间中,而I 4/m相的电化物特性已被完全破坏。我们将 Y-C 系统前所未有的高 Tc 超导性的发展归因于磁性的破坏和层间阴离子电子在压力下的脱ocal。这项研究提供了一个独特的例子,说明在电化物材料中超导性开始时,磁性在压力诱导下坍塌,同时晶格中的电子配置拓扑结构也发生了巨大变化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Physics: Condensed Matter
Journal of Physics: Condensed Matter 物理-物理:凝聚态物理
CiteScore
5.30
自引率
7.40%
发文量
1288
审稿时长
2.1 months
期刊介绍: Journal of Physics: Condensed Matter covers the whole of condensed matter physics including soft condensed matter and nanostructures. Papers may report experimental, theoretical and simulation studies. Note that papers must contain fundamental condensed matter science: papers reporting methods of materials preparation or properties of materials without novel condensed matter content will not be accepted.
期刊最新文献
Symmetry-controlled SrRuO3/SrTiO3/SrRuO3 magnetic tunnel junctions: spin polarization and its relevance to tunneling magnetoresistance Effect of Sr substitution on the structural, dielectric and ferroelectric property of BaTiO3. Intrinsic Exchange Bias from Interfacial Reconstruction in an Epitaxial NixCoyFe3-x-yO4(111)/α-Al2O3(0001) Thin Film Family. A multi-orbital Hund's rules-based ionic Hamiltonian for transition metal atoms: high-order equation of motion method approach and Kondo resonances. Weak antilocalization in the topological semimetal candidate YbAuSb.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1